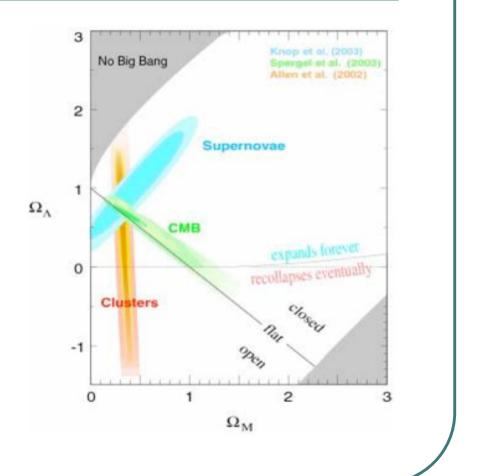
LHC: links with cosmology and astroparticle


G. Bélanger LAPTH- Annecy

Outline

- Dark matter
- LHC and DM
- Astroparticle/cosmology and DM
- The links: supersymmetry as an example
- Other dark matter candidates
- Baryon asymmetry

What is the universe made of?

- Dark matter inferred from rotation curve of galaxy
- In recent years : new precise determination of cosmological parameters
- Data from CMB (WMAP) agree with the one from clusters and supernovae
 - Dark matter: 23+/- 4%
 - Baryons: 4+/-.4%
 - Dark energy 73+/-4%
 - Neutrinos < 1%</p>
- Dark matter dominates over visible matter

What is dark matter/dark energy

- Dark matter
 - Related to physics at weak scale
 - New physics at weak scale can also solve EWSB
 - Many possible solutions
- Dark energy
 - Related to Planck scale physics
 - NP for dark energy might affect cosmology and dark matter
- Baryon asymmetry
 - New physics at weak scale could also explain baryon asymmetry of the universe, eg. electroweak baryogenesis and MSSM with CP violation
 - Leptogenesis may be connected to some higher scale

Dark matter : a new particle?

• Weakly interacting particle gives roughly the right annihilation cross section to have $h^2 \sim 0.1$

$$\Omega_X h^2 \approx \frac{3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle}$$

- Many candidates for weakly interacting neutral stable particles
 - best known is neutralino in SUSY
 - Other models with NP at TeV scale have candidates, only need some symmetry to ensure that lightest particle is stable: UED, Warped Xtra-Dim, Little Higgs...
 - Superweakly interacting particles might also work (gravitino)

.... a new particle

 To know if these new stable particles give precisely the required amount of DM (or less) one needs to know the details of the underlying model. At 2 sigma (with conservative error bars):

$.087 < _{CDM}h^2 < .138$

- We have no evidence of what NP could be but LHC which will probe symmetry breaking mechanism will help
- Direct/Indirect detection : search for dark matter → establish that new particle is dark matter → constrain models
- Cosmology \rightarrow precise measurement of relic density \rightarrow constrain models

What can LHC tell us about DM ?

- Discover new particles
- Determine the underlying model for NP at the weak scale + consistency checks of underlying model at high scale, e.g. SUGRA
- Determination of properties of new particles
 - From this deduce annihilation cross sections for dark matter
 - Prediction for relic density compare with measurement, if "collider prediction" precise enough it means
 - Testing underlying cosmological model
 - When comparing with signals from indirect detection-information on dark matter distribution....
 - Also compute cross section for dark matter scattering on nuclei -> consistent with direct detection results ?
 - Information on velocity distribution of DM

LHC and dark matter

- How well can the properties of dark matter be determined?
 - Strongly depends on the particle physics model (SUSY or Xtra-Dim or...)
 - Strongly depends on details of given model, mass of new particles, couplings etc..
- What the LHC cannot do:
 - Produce directly large numbers of weakly interacting particle, mainly in decay products of strongly interacting particles
 - Cannot know for sure there is stable particle (missing energy)
 - Say anything directly about dark matter spatial and velocity distributions

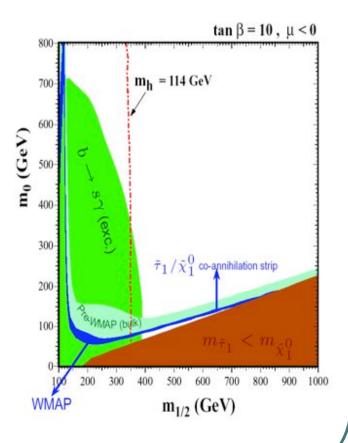
Cosmology/Astroparticle

- What can we learn from cosmology
 - Establish DM
 - Determination of _h²
 - Constrain PP models assuming • Combined
 Cosmology
 - Improve determination of _h² (PLANCK)
 - More constraints on PP models

- What can we learn from DD
 - Establish that a new particle is DM
 - Measurement of cross section in different nuclei : compatibility with NP scenario (SUSY or other)
 - Some information on the mass of DM candidate
 - Caveats:
 - assumption about local density and velocity distribution
 - Uncertainties in nuclear matrix elements

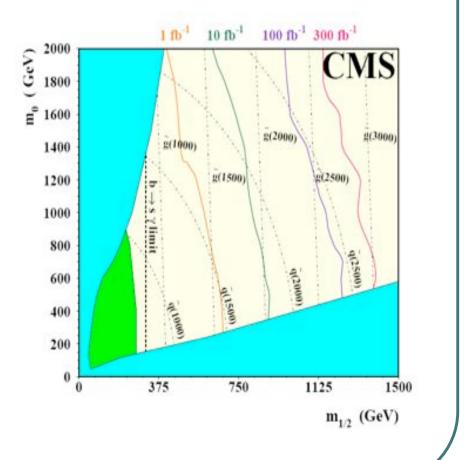
Indirect detection

• Pair of dark matter particles annihilate and their annihilation products are detected in space

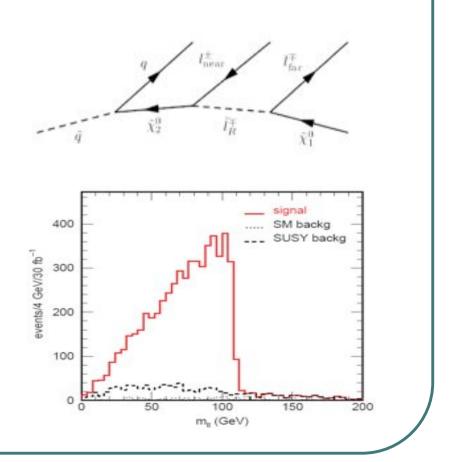

• Search for DM in different channels

- Positrons from neutralino annihilation in the galactic halo
- Photons from neutralino annihilation in center of galaxy
- Neutrinos from neutralino in sun
- Consistency checks of different signals
- Check compatibility with NP scenario (SUSY or other)
- Caveat: assumptions on dark matter distribution

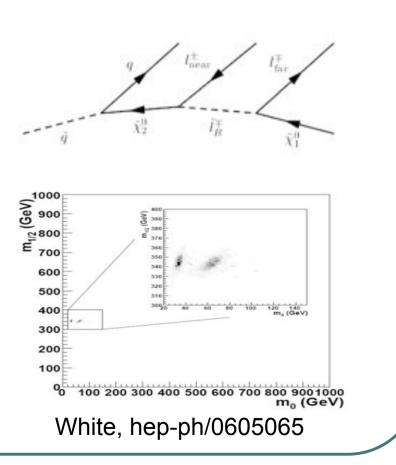
Supersymmetry as an example


- The case of neutralino LSP
- Most studies at colliders done within context of CMSSM or mSUGRA (small number of parameters: 4 _ instead 100)
 - Convenient, good for tuning analyses, but not completely general
 - Somewhat fine tuned from DM perspective – neutralino is in general bino

Potential of discovery at LHC


Potential for SUSY discovery at LHC

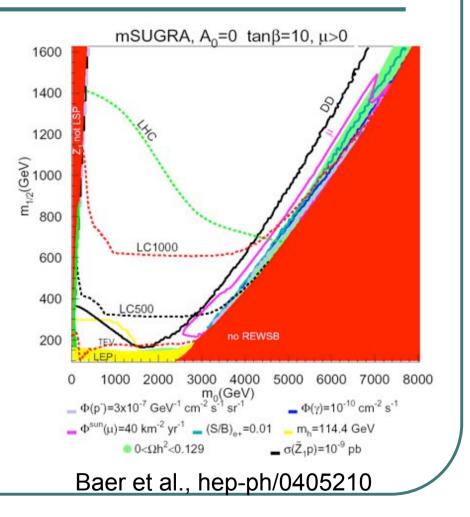
- pp collider @14TeV
- Operation starts late 2007
- Squarks, gluinos < 2- 2.5 TeV
- Sparticles in decay chains
- Higgs searches
- CMSSM: probe significant parameter space, large m₀-m_{1/2} difficult
- Other models : similar reach in masses for coloured particles


LHC and DM

- How will LHC see dark matter?
 - Missing energy
 - Sample decay chain
- What can LHC measure?
 - Mass differences (using endpoints) percent level
 - Masses (endpoints +cross-sections + theory) more difficult – Lester, Parker, White '05
 - Some properties of particles: spin.. (Barr –hep-ph/0511115)
 - Reconstruct underlying model parameters especially if theoretical assumption

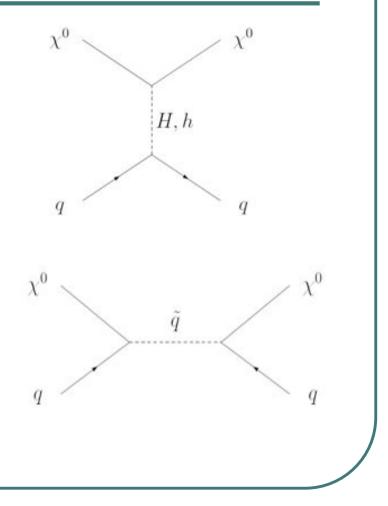
LHC and DM

- How will LHC see dark matter?
 - Missing energy
 - Sample decay chain
- What can LHC measure?
 - Mass differences (using endpoints) percent level
 - Masses (endpoints +cross-sections + theory) more difficult – Lester, Parker, White '05
 - Some properties of particles: spin.. (Barr –hep-ph/0511115)
 - Reconstruct underlying model parameters especially if theoretical assumption

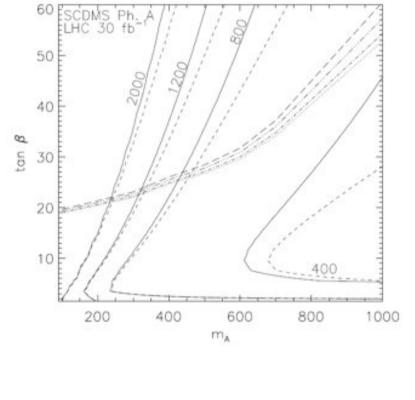

Why different approaches to DM

- Complementarity
 - No experiment cover full parameter space of all models (even SUSY model)
- Concurrence
 - Signals in different types of experiments allow cross-checks
 - Possible tests of cosmology, dark matter distribution...

Complementarity


• LHC

- Good for discovery of coloured particles
- Limited reach when all squarks heavy – only chargino/neutralino "light"
- In CMSSM this occur when LSP is mixed bino/Higgsino
- Direct and indirect detection
 - Good prospects for mixed bino/Higgsino


Complementarity - DD

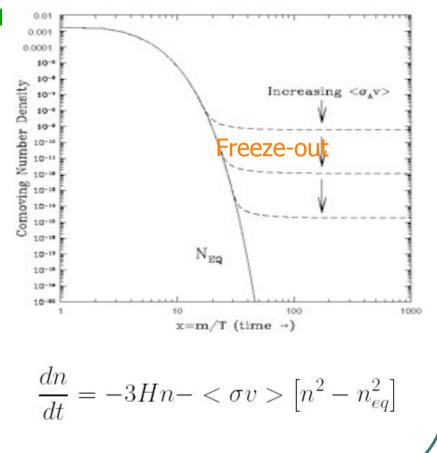
- Detect dark matter through interaction with nuclei in large detector
- Often dominate by Higgs exchange diagram (except when squarks are light)
- Higgsino component is necessary to have LSP coupling to Higgs
- With next generation of detectors (10⁻⁹pb), direct searches can probe regions of CMSSM parameter space inaccessible to LHC
- Annihilation of LSP in W pairs enhanced for mixed bino/Higgsino – also favoured for indirect detection

Complementarity-LHC/DD

- If squarks dominate (below 1TeV) they will be quickly found at LHC
- If Higgs dominate, LHC (even Tevatron) might see a heavy Higgs signal
 - $pp \to A/H + X \to +X$
- a fraction of the MSSM models that predict a signal in SCDMS (~10⁻⁹ pb) will also give a Higgs signal at colliders

Carena et al, hep-ph/0611065

Probing cosmology using collider information


- Within the context of a given model can one make precise predictions for the relic density at the level of WMAP(10%) and even PLANCK (3%) therefore test the underlying cosmological model.
 - Assume discovery SUSY/Higgs, precision from LHC? Precision for ILC?
- Answer depends strongly on underlying NP scenario, many parameters enter computation of relic density, only a handful of relevant ones for each scenario work is going on in North America, Asia and Europe both for LHC and ILC
- A few benchmark scenarios studied in detail
 - 1st step : CMSSM scenario that predict relic density in agreement with WMAP.
 - 2nd step : MSSM scenarios
 - Other scenarios

Reminder: Relic density of wimps

- In early universe WIMPs are present in large number and they are in thermal equilibrium
- As the universe expanded and cooled their density is reduced through pair annihilation
- Eventually density is too low for annihilation process to keep up with expansion rate

Freeze-out temperature

 LSP decouples from SM particles, density depends only on expansion rate of the universe

One sample benchmark: SPA1A

• bino+ stau coannihilation

- Annihilation into fermions
- Coannihilation with staus
- Relevant parameters : LSP mass, couplings, slepton masses
 - stau-neutralino mass difference (for coannihilation processes – factor e ^{-_M})

M₀=70, M_{1/2}=250, A0=-300,tan_=10

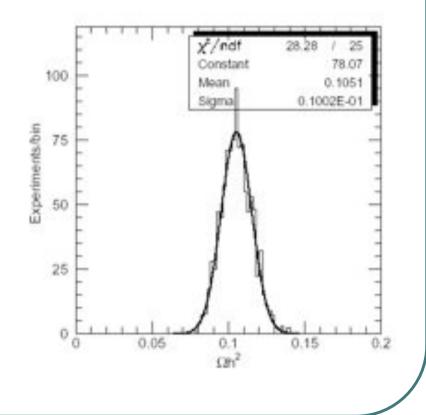
Sparticle	mass (GeV)	Sparticle	mass (GeV)	
$\tilde{\chi}_1^0$	97.2	$\tilde{\chi}_2^0$	180.1	
$\tilde{\chi}_{3}^{0}$	398.4	$\bar{\chi}_{4}^{\bar{0}}$	413.8	
$\tilde{\ell}_L$	189.4	$\tilde{\ell}_R$	124.1	
$\tilde{\tau}_1$	107.7	$\tilde{\tau}_2$	194.2	
\bar{t}_1	347.3	\tilde{t}_2	562.3	
\tilde{u}_L	533.3	\tilde{g}	607.0	
h	116.8	A	424.6	

Process	Fraction
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$	40%
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \tau^+ \tau^-$	28%
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \nu \bar{\nu}$	3%
$\tilde{\chi}_1^0 \tilde{\tau}_1 \rightarrow Z \tau$	4%
$\tilde{\chi}_1^0 \tilde{\tau}_1 \rightarrow A \tau$	18%
$\tilde{\tau}_1 \tilde{\tau}_1 \rightarrow \tau \tau$	2%

Determination of parameters LHC : SPA1A

- Decay chain $\tilde{q} \to q \tilde{\chi}_2^0 \to q \tilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$
- Signal: jet +dilepton pair
- Can reconstruct four masses from endpoint of II and qII
 - In particular stau-neutralino mass difference
- Here _m (NLSP-LSP) = 10.5GeV

 Mixing in the stau sector obtained from

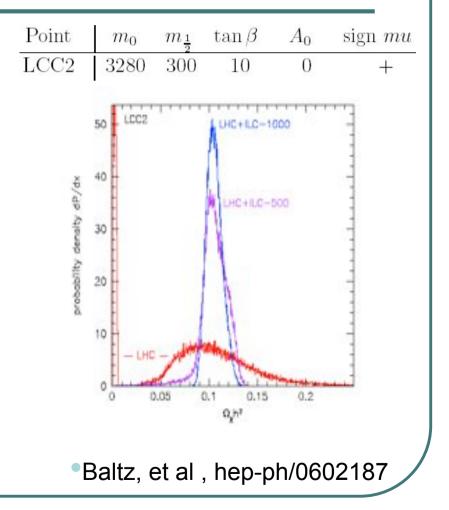

 $BR(\tilde{\chi}^0_2 \to \tilde{\ell}_R \ell) / BR(\tilde{\chi}^0_2 \to \tilde{\tau}_1 \tau)$

- For LSP couplings need 3 masses (¹²⁴) and assume tan
- Assume tan_known + limit on heavy stau and on heavy Higgs

LHC: SPA1A

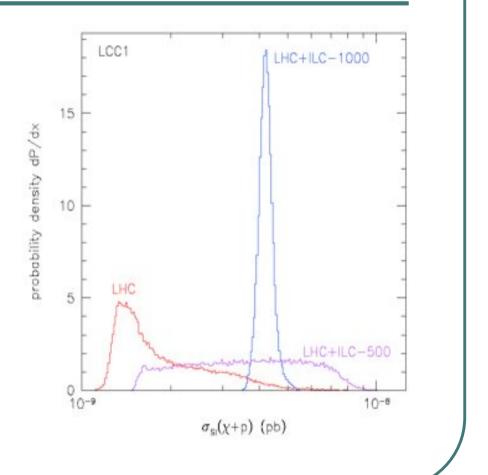
- Estimate error from LHC measurements+ vary all MSSM parameters within these errors
- LHC: roughly the WMAP precision can be achieved within MSSM
- Also important to measure sfermion/ neutralino parameters and setting limits on Higgs, other coannihilation particles ...
- Other mSUGRA and even more so other MSSM scenarios can be hard for LHC

Nojiri et al, hep-ph/0512204



Example : Higgsino- LCC2

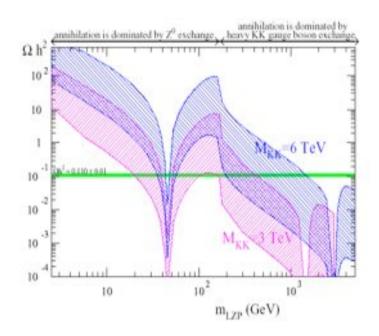
- If squarks are heavy difficult scenario for LHC
 - only gluino accessible, chargino/neutralino in decays
 - mass differences could be measured from neutralino leptonic decays,
 - Relic density of DM depend on parameters of neutralino, need to be determine at % level
 - Recent study shows that necessary precision cannot be reached


Light Higgsinos →possibly many accessible states at ILC

• chargino pair production sensitive to bino/Higgsino mixing parameter

LHC + direct detection

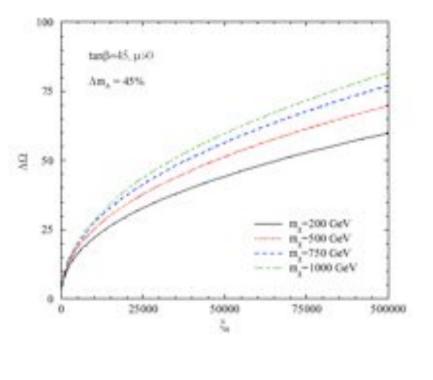
- With measurements from LHC can we refine predictions for direct/indirect detection?
- Consider our first example:
 SPA1A
- Prediction for spinindependent cross-section
 - Observable by 2010
- Factor of 3 uncertainty, improves significantly at ILC1000 (heavy Higgs mass)


Other DM candidates: KK

• UED

- Minimal UED: LKP is B⁽¹⁾, partner of hypercharge gauge boson
- s-channel annihilation of LKP (gauge boson) typically more efficient than that of neutralino
- Compatibility with WMAP means rather heavy LKP
- Within LHC range
- Warped Xtra-Dim (Randall-Sundrum)
 - GUT model with matter in the bulk
 - Solving baryon number violation in GUT models → stable Kaluza-Klein particle
 - Example based on SO(10) with Z3 symmetry: LZP is KK righthanded neutrino
 - Agashe, Servant, hep-ph/0403143

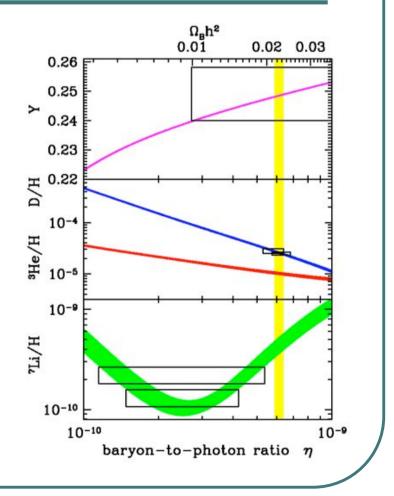
Dark matter in Warped X-tra Dim


- Compatibility with WMAP for LZP range 50GeV-> 1-2TeV
- LZP is Dirac particle, coupling to Z through Z-Z' mixing and mixing with LH neutrino
- Large cross-sections for direct detection
 - Signal for next generation of detectors in large area of parameter space
- What can be done at colliders :
 - Signal for KK quarks (Dennis et al. hep-ph/071158) and for Z'
 - Identify model, determination of parameters and confronting cosmology??

Agashe, Servant, hep-ph/0403143

Cosmological scenario

- Different cosmological scenario might affect the relic density of DM
- Example: quintessence
 - Quintessence contribution forces universe into faster expansion
 - Annihilation rate drops below expansion rate at higher temperature
 - Increase relic density of WIMPS possible large enhancements in MSSM
- Other scenarios could give a suppression of relic density-> good for LHC, easier to make precise predictions in models where _h²>0.1, less fine tuning.

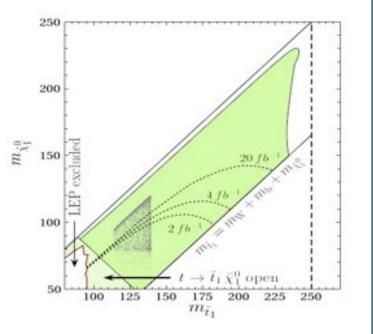

Profumo, Ullio, hep-ph/0309220

Baryon asymmetry of universe

- Small excess of particles over antiparticles in the universe
- Both Big Bang Nucleosynthesis (BBN) and measurements of CMB agree

$$\eta \equiv \frac{n_B}{n_{\gamma}} = \begin{cases} 3.4 - 6.9 \times 10^{-10}, & \text{BBN} \\ 5.9 - 7.3 \times 10^{-10}, & \text{CMB} \end{cases}$$

- Conditions to create an excess
 - Baryon number violation
 - C and CP violation
 - Out of thermal equilibrium
 - Non-vanishing B-L
 - Need physics Beyond the SM

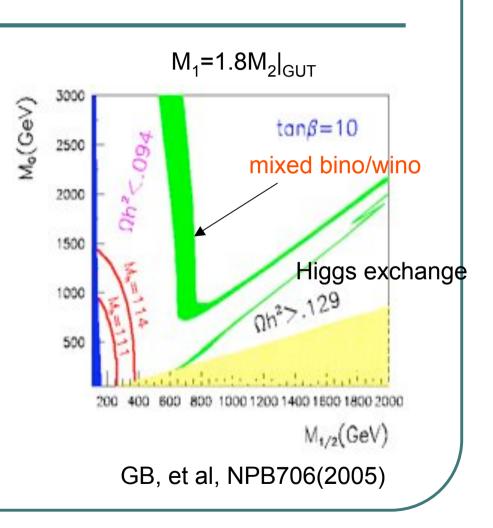


Electroweak baryogenesis

- Baryon number generation at electroweak phase transition
- Need strong first order phase transition
- Finite temperature effective potential
 - V= AT²² ET ³+ ⁴, condition : 2E/_>1
 - In SM requires Higgs mass < 50 GeV</p>
- New physics solution:
 - Bosonic loops: light stops in MSSM (Carena et al..)
 - New strongly coupled fermions
 - Modification of tree-level potential
 - NMSSM, SUSY with U(1)' (Kang et al, 2005)
 - Higher-order operators in Higgs-potential
 - Kanemura, Okada, Senaha (2004)
 - Grojean, Servant, Wells (2004)

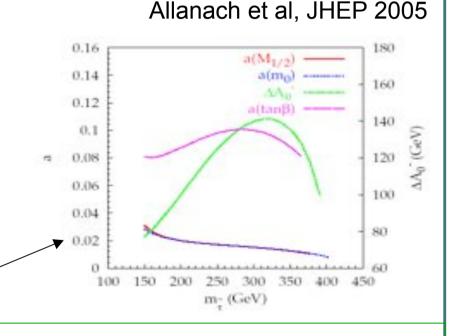
Electroweak baryogenesis and Colliders

- Whether electroweak baryogenesis is realised with new particles or modification of the Higgs sector, there will be signals at colliders (and also in CP violation)
- Well-defined scenario in MSSM : Light RH stop + light Higgs+ light neutralino/chargino +CPV
 - Complementarity: discovery potential at Tevatron/LHC + DD + EDM
 - Signals for CP violation at colliders
 - "Prediction" for relic density of DM in this model (hard for LHC)
 - Freitas et al. hep-ph/0508152
- Modification of Higgs potential → measurement of triple Higgs coupling


Carena et al., hep-ph/0508152

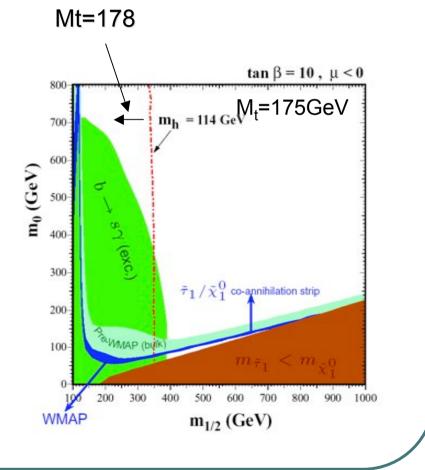
Conclusions

- If LHC discover new particles, will give precious information on NP model and on potential DM candidate – complementarity with direct/indirect detection.
- In more favourable cases, detailed measurements of new particle properties can reduce (PP) uncertainty in prediction of relic density and/or cross-sections in direct/indirect detection –might even test cosmological model – many detailed analyses are going on
- Models to explain Baryon asymmetry in the universe can be tested at LHC

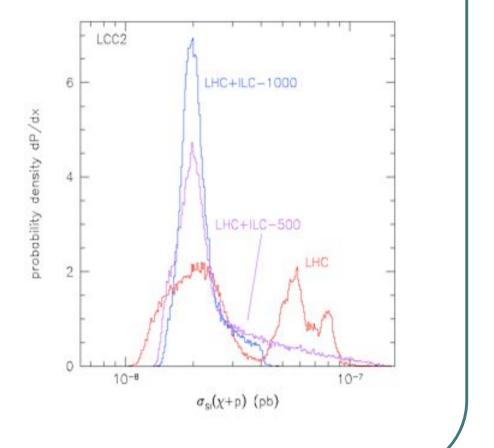

Some examples

- mSUGRA-focus
- Non universal SUGRA, e.g. non universal gaugino masses
 - GB, Boudjema, Cottrant, Pukhov, Bertin,Nezri, Orloff, Baer, Birkedal-Hansen, Nelson, Mambrino, Munoz...
- String inspired modulidominated : generically LSP has inportant wino component
 - Binetruy et al, hep-ph/0308047
- Split SUSY
 - Large M₀
 - Higgsino/wino/bino LSP
 - Masiero, Profumo, Ullio, hep-ph/0412058
- NMSSM

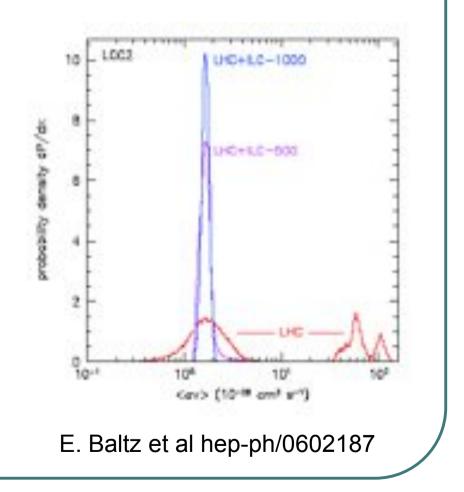
The simplest example: mSUGRA/coannihilation (staus)


- Challenge: measuring precisely mass difference
- Why? _h² dominated by Boltzmann factor exp(- _M/T)
 - Although masses are predicted at 1-2% level, still leads to large uncertainties in relic density
- Precision required on mSUGRA parameters to predict _h² at 10% level
 - M₀, M_{1/2} ~2%
- LHC: roughly this precision can be achieved in "bulk" region
 - Tovey, Polesello, hep-ph/0403047

 For coannihilation region errors on mass could be larger (more difficult with staus


WMAP constraining NP: mSUGRA example

- bino LSP
 - In most of mSUGRA parameter space
 - Annihilation in fermion pairs
 - Works well for light sparticles but hard to reconcile with LEP/Higgs limit (small window open)
- Sfermion coannihilation
 - Staus or stops
 - More efficient, can go to higher masses
- Mixed bino-Higgsino: annihilation into W/Z/t pairs
- Resonance (Z, light/heavy Higgs)


LHC+ILC+direct detection

- Favourable example: LCC2 (Higgsino)
- Large spin-independent cross-section
 - e.g. observable at CDMS2
- Ambiguities at LHC

LHC+ILC + indirect detection

- With measurements from LHC+ILC can we refine predictions for indirect detection?
- Consider our Higgsino example (LCC2)
- Prediction for annihilation cross-section at v=0
- For GLAST with NFW profile expect 8600 photons (Background=43000)

Comparisons of DM scenarios

Scenario		SUSY1 bino	SUSY2 higgsino	SUSY3 gravitino	LZP ν_R	LTP heavy photon
LHC	Discovery	***	*	**	*	**
	precision	*	No	?	?	?
ILC	Discovery	***	**	**	*	**
	precision	***	*	?	?	?
Direct		*	***	No	***	No
Indirect	$\gamma \text{ or } \nu$	*	***	No	**	***

WMAP – constraining mSUGRA

Bino - LSP5000 g 4500 Sfermion Coannihilation $\tan\beta = 50$ Mixed Bino-Higgsino m_t=175GeV 3500 Annihilation into W pairs 3000 0h2>0.129 In mSUGRA unstable region, m_t 2500 dependence, works better at 2000 large tan_ 1500 $M_{b} = 114$ Resonance (Z, light/heavy 1000 Higgs) 500 T-LSP LEP constraints for light Higgs/Z 500 1000 1500 Heavy Higgs at large tan M1/2(GeV) (enhanced Hbb vertex)