Gravitational wave detectors network data analysis

I.S. Heng University of Glasgow

Outline

- Introduction
- Coherent burst gravitational wave searches
 - all-sky searches
 - triggered searches
- Coherent analysis for Inspiral signals

ILIAS N5 WG2

- joint analysis of data from network of detectors
 - co-chairs: G. Guidi & I.S. Heng
- brings together many gravitational wave data analysts from across Europe
 - also have joint meetings with theoretical astronomers
- discuss common issues in development of techniques
- address issues in joint analysis of European network of detectors
 - analysis of data jointly acquired by Virgo interferometer and European resonantbar detectors
 - IGEC2: global network of resonant-bar detectors
 - implement search for stochastic gravitational radiation background with GEO-Virgo network
- gaining stronger focus on searches associated with triggers in the EM spectrum, addressing data analysis issues for future generations of gravitational wave detectors

- eg. spin in binary black hole systems, parameter estimation of detected signals ILIAS 4th annual meeting, 27th of February, 2007

Gravitational wave detectors worldwide

Interferometer sensitivities

Virgo and GEO600

Detectors & polarisations

• gravitational wave signal as seen by the detector

$$h_i(t) = f_{i,+}h_+(t) + f_{i,\times}h_{\times}(t)$$

- $f_{i,+}$ and $f_{i,x}$ are a function of the sky location of source
- for detectors that are aligned, $f_{i,+}$ and $f_{i,x}$ are very similar
 - applicable for LIGO network
- for worldwide network, detectors are not aligned to each other

Inspiral and Bursts

- Bursts
 - unmodelled pulses of GW
- Inspirals
 - coalescing binary compact objects
- Periodic
 - non-axisymmetric rotating neutron stars
- Stochastic
 - background of GW from, for example, superposition of relic GW signals

• Merger Science: nonlinear dynamics of spacetime curvature

Burst gravitational wave searches

- short (~1ms) pulses of gravitational waves
- sources include supernovae core collapse and merger phase of binary neutron stars
- two broad categories of burst searches:
 - all-sky: unknown source parameters, maximise detection efficiency over entire sky
 - triggered: search is triggered by observation in EM spectrum (eg. GRB, pulsar glitch)
- most common approach is to search for coincident excess power in network of detectors
 - LIGO detectors are aligned to each other use a cross-correlation follow up

Virgo-bars & IGEC2

- Virgo-bars
 - exchange 24 hours of data
 - L. Baggio (funded by ILIAS Fellowship) part of analysis team
 - null hypothesis confirmed: finalising results and setting upper limit
- IGEC2 (resonant-bar network)
 - exchange 6 months of data: I 30 days triple coincidence
 - no Science data available from other detectors during this period
 - null hypothesis confirmed

Coherent burst analysis

- coherent analysis merge data from multiple detectors while taking into account the different noise level and directional sensitivities of each detector
 - improve efficiency of the network
 - reduce false alarms
- one can take two approaches for coherent burst analysis
 - "data combination"
 - "likelihood methods" based on work by Gruesel and Tinto PRD 40, 3884 (1989)
- note that use of coherent methods allow for parameter estimation of detected signal
 - sky location of signal source
 - waveform reconstruction
- other coherent methods:
 - M. Rakhmanov, CQG 23, S673 (2006)
 - L.Wen, gr-qc 0702096

Coherent burst analysis

- "data combination" approach first proposed by J. Sylvestre, PRD 68, 102005 (2003)
- combination outputs of detectors into a single data stream

$$h_{rec} = \sum_{i} f_{i,+} h_i (t + \delta t_i) / \sigma_i$$

Estimated SNR for source from Galactic Centre for one instance in time

	Coherent	Virgo	Livingston	Hanford	
	4.5	3.5	3.0	1.2	
increasing	5.3	4.2	3.5	1.4	work done by N. Leroy
amplitude	7.9	6.3	5.3	2.1	
١	13.2	10.5	8.9	3.4	

- one implementation using Wavelet transforms (coherent Waveburst) has been used on data acquired by LIGO and GEO600
- preliminary results show improved sensitivity with respect to noncoherent methods ILIAS 4th annual meeting, 27th of February, 2007

Triggered burst searches

- burst searches triggered by observation in electromagnetic spectrum
- gamma-ray bursts associated with merger of two neutron stars
- glitches in pulsar timing associated with "star quake" leading to normal mode oscillations of neutron star
- fewer free parameters to search over compared to all-sky search
 - know time, sometimes direction and distance
- previous searches have used cross-correlation in data from LIGO detectors
- planning to use coherent analyses to incorporate more detectors
- also developing Bayesian approach for ringdown analysis

Bayesian ringdown search

model I: data contains ringdown, model 2: white noise

Bayesian ringdown search

can be extended to take into account non-gaussian "glitches"

- begun collaboration with A. Corsi (INAF-IASF) on ringdowns associated with GRBs
- coherent version of this analysis: $p(M_{GW} \mid \{D\}, I) = p(M_{GW} \mid I) \prod_{i} \frac{p(D_i \mid M_{GW}, I)}{p(D_i \mid I)}$ ILIAS 4th annual meeting, 27th of February, 2007

Coherent inspiral analysis

- Inspiral gravitational wave signals arise from inspiral compact objects in binary system
- for coherent inspiral analysis, the log likelihood ratio is derived by A.
 Pai, S. Dhurandar and S. Bose PRD 64 042004 (2001)

$$LLR = \sum_{i} \left(\left\langle s_{i}, x_{i} \right\rangle_{i} - \frac{1}{2} \left\langle s_{i}, s_{i} \right\rangle_{i} \right)$$

- investigation into use of coherent inspiral analysis performed by two groups
 - S. Bose et al.
 - S. Birindelli, L. Bosi, F. Marion and A.Vicere

Inspiral range

ILIAS 4th annual meeting, 27th of February, 2007

Sky location estimation

ILIAS 4th an