
Modelling gravitational wave sources
Ian Jones

D.I.Jones@soton.ac.uk

General Relativity Group, Southampton University

Ian Jones Modelling GW sources 1/14



The role of modelling

I will talk about the modelling of gravitational wave (GW) sources.

There are several reasons why this is important:

1. To help make a detection:
by providing waveforms
by identifying promising regions of parameter space
by influencing detector operation or design

2. To allow extraction of useful physics
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Outline
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Binary inspiral

Binary inspirals are a (possibly the) leading candidate for GW
detectors.
Several decades have been spent on trying to produce wave
forms - success came dramatically in the last two years.
Key ingredients were:

Clever formulations of the Einstein equations—particularly
when dealing with the event horizons/singularities.
Good initial data.
Adaptive mesh refinement.
And, of course, seriously expensive computers.
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Binary inspiral

Waveforms now calculated for a few points in parameter space.
Agreement with post-Newtonian calculations good, e.g. Baker et
al. (2006; gr-qc/0612024):
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However, the parameter space is huge; how can we construct
necessary templates?
Already surprises have been found...
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Binary inspiral: kicks

Simulations have found that significant angular momentum can be
imparted during coalescence, e.g. González et al. (2007;
gr-qc/0702052):
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Astrophysical implications are immense.
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Core collapse & supernovae

There are many essential ingredients:
Strong-field gravity
Accurate wave extraction
Realistic initial configurations
Accurate treatment of fluid (including
shocks)
Realistic equation of state
Treatment of neutrino propagation
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Core collapse: from an iron core to a
proto-neutron star

Interesting recent results from
Dimmelmeier et al. (1007;
astro-ph/0702305)
Includes most important ingredients.
Find that shape of GW signal generic
and dominated by gravity/pressure
effects.
However, frequency of signal is parame-
ter dependent:
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Core collapse: black hole formation

Baiotti, Hawke & Rezzola (2007;
gr-qc/0701043) collapse ∼ 1M? rotating
stars to black holes.
BH formation creates unique problems.
Use 7 levels of mesh refinement to
allow wave extraction.
Produce varied waveforms.
Find energy release ∝ (J/M 2)4
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Magnetars

Magnetars are slowly rotating (f < 1 Hz) compact objects with
very strong magnetic fields (1014–1015 G).
Several have been observed to emit X-ray bursts; quasi-periodic
oscillations have been seen in the tails of two of these.
We are probably seeing neutron star oscillations, so
GW/astrophysical interst immense.
But, what exactly is going on? Currently a hot topic, with much
debate...
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Magnetars

Glampedakis et al. (2006; MNRAS 371
L74) have computed elastic/MHD
modes in simplified geometry.
Find rich spectrum, with crustal
oscillations in correct range:

However, Levin (2007;
astro-ph/0612725) find that MHD
continuum plays a crucial role:
So, still debate about main physics de-
termining spectra...
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Periodic sources

‘Periodic’ means long-lived and approximately sinusoidal
waveform.
Rotating neutron stars best candidate; three main emission
mechanisms:
1. ‘Mountains’, i.e. equatorial moments of inertia unequal
2. Free precession
3. Fluid instabilities
Physical modelling very complicated; involves GR,
superfluidity/conductivity, elasticity, magnetic fields, rotation, ...
Also, parameter space is of (at least) seven dimensions:

θ = (h0, f, α, δ, φ0, ι, ψ)
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Periodic sources: known stars

Upper limits on GW emission from mountains on known pulsars:
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Modelling informs which upper limits are most plausible (or least
implausible..., e.g. Owen 2006, Haskell, DIJ & Andersson 2006)
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Summary

There have been major advances in the last few years,
particularly in numerical relativity.
Wave forms for inspiral and collapse are beginning to be
produced; there remains a huge parameter space to cover.
There exist many interesting partially solved problems in neutron
star oscillation/rotation.
In all areas, dialogue between numerical and perturbative
treatment crucial, and will remain so.
Progress excellent, but GW data analysis needs more help to
make searches feasible.
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