A BiPo detector for extremely low level radioactivity diagnostic

Jérémy ARGYRIADES, LAL Orsay

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Outline

 What is the BiPo radio-impurity? Detection technique
 R&D program description
 Prototype BiPo I : scintillator cubes
 Prototype BiPo II : scintillator plates

February 27th 2007

BiPo decay process

Detection technique

 $E_{\text{threshold}} (e^{-}) = 100 \text{ keV}$ + $E_{\text{threshold}} (\alpha) = 1 \text{ MeV}$

+ back-scattering rejection > 40 keV
 → Detection efficiency of 7.5% (G4 MC)

Background sources :

Random coincidence

Surface contamination (until a depth of 100µm)

February 27th 2007

Additional cut for surface contamination

Important background : surface contamination

e⁻ from ²¹²Bi: ~ 50 keV in 100 µm of scintillator

Cut : no e⁻ with energy > 50 keV in the scintillator of the α •efficiency ≥ to 6% •BUT background ÷ 15 ! Merit factor : Signal/√(Background) ⋧ by 300 % ! ☑

February 27th 2007

R&D program

2 different prototypes studied :
 25 blocks of scintillator/m², 1 PMT/block
 1 plate of scintillator/m², ~30 PMTs/plate

•Additional R&D : ultra-thin scintillating fiber for $e^{-/\alpha}$ separation

•Common electronic : acquisition by card MATACQ (12 bits, 0-1V, 2.5µs, 2GHz/s)

•Low background test in LSC, Canfranc, Spain (2500 m.w.e.)

February 27th 2007

ILIAS 4th Annual Meeting

Description of the BiPo I prototype

Scintillator blocs: 20 x 20 x 1 cm

•NEMO-3 equipments (radiopure 5" PMTs, radiopure scintillator, etc...)
•First capsule installed in Canfranc end of the year 2006 with ultra-pure Al
•For the moment, DAQ with Lecroy

oscilloscope
 PMMA
 optical guide →

BiPo I CAPSULE

Jérémy ARGYRIADES ILIAS 4th Annual Meeting

February 27th 2007

Measurement of the quenching factor

 $^{241}\mbox{Am}\ \alpha$ source, peak at 5.6 MeV Light in a scintillator detected by a PMT

Successive mylar foils to decrease the α energy

Jérémy ARGYRIADES ILIAS 4th Annual Meeting

February 27th 2007

Measurement of the quenching factor

February 27th 2007

Jérémy ARGYRIADES ILIAS 4th Annual Meeting 10

Calculation principle of the BiPo sensitivity

If we see during T_{obs} N events, we can calculate the sensitivity as follows :

Surface of 1 Capsule : $S = 400 \text{ cm}^2$

Efficiency: $\varepsilon = 36\%$ because : 50% : e⁻ and α are back-to-back × 90% : delay time up to 1 µs (= 3.3 T_{1/2}(²¹²Po)) × 80% : event is rejected if back-scattered e⁻

→ Sensitivity : $A(^{212}Bi \rightarrow ^{212}Po) < N_{excluded} / (\epsilon \times S \times T_{obs})$

1st sensibility result of BiPo I capsules

- 1 capsule alone : 10.1 days of measurement
 - 0 BiPo "in time" events (<1µs)
 - 1 BiPo "random" event (>1µs) compatible with 0.32 expected coincidences

 $\rightarrow \text{limit A}(^{212}\text{Bi} \rightarrow ^{212}\text{Po}) < 65 \ \mu\text{Bq/m}^2$ $(A(^{208}\text{Tl}) < 32.5 \ \mu\text{Bq/m}^2)$

 2 capsules : 11.3 days

 0 BiPo "in time" events
 0 BiPo "random" events for 1 expected coincidence

 A(²¹²Bi → ²¹²Po) < 29 µBq/m² (A(²⁰⁸Tl) < 14.5 µBq/m²)

February 27th 2007

Description of BiPo II prototype

- Scintillating plate 75×75 cm² or wider
- ~20 PMTs' lecture on 2 sides
- Optical guides to transfer the light from scintillator to PMTs
- R&D Issues :
 - How many PMTs? 2" or 3"?
 - Optimized shape of the optical guides?
 - Energy threshold for an α in the middle?

February 27th 2007

Experimental set-up in Orsay A well-designed mechanical support has been conceived : – Plots for the 20x20 cm² scintillator plate – Fixation for the PMTs

February 27th 2007

Position reconstrution

- 4 PMTs reading a 20×20 cm² plate
- ²⁴¹Am α source placed every 5cm on the plate
- We need to reconstruct the source position with charge information

February 27th 2007

Jérémy ARGYRIADES ILIAS 4th Annual Meeting 15

X

Neural Network Software

• Testing sample (different from learning one) is reconstructed. Estimation of the position resolution by $\Delta X = X_{reconstructed} - X_{true}$ and ΔY

Position resolution better than 2 cm

February 27th 2007

Technical solutions

• December 2006 : source support for its "magnetic" displacement 5mm precision

• January 2007

larger black box \Rightarrow 50cm x 50 cm plate available

ILIAS 4th Annual Meeting

1193EBM001

80.144

Planning

• 20 BiPo I capsules tested in Canfranc in 2007

Summer 2007 : 50×50 cm² and 75×75 cm² scintillator plates tested
End of year 2007 : 1st 2-layers BiPo2 prototype installed in Canfranc for low radioactivity measurement

Conclusion

- Intense R&D program for the BiPo detector.
- 1st important questions will be answered this year (BiPo I or II ? PMTs size ? Expected sensitivity of 0.2 µBq/m² is reachable ?)
- Collaboration with Osaka University for BiPo II : 53x53cm² scintillator plate with 32 PMTs.
- In the middle term, we need to build an operative prototype in the year 2008. Test of ββ source foils (ILIAS JRA2).
- Transnational access for test in Canfranc, around 100 days.

Thanks, merci, gracias, Evχαριστώ, , Спасибо, grazie, مر كشتم, благодаря, děkuji

February 27th 2007

Backup

Candidate

February 27th 2007

Jérémy ARGYRIADES ILIAS 4th Annual Meeting 22

Why SuperNEMO needs a radiopurity ultra-sensitive detector?

 Goal of BiPo : precise measurement of the ²⁰²TI (via ²¹⁴Bi) on source foils before their installation in Super NEMO

Required sensitivity: 2 µBq/kg in 1 month
 → 0.2 µBq/m²

 Technique : plastic scintillator to search for Bi --> Po decay

Jérémy ARGYRIADES ILIAS 4th Annual Meeting

February 27th 2007

25

Super NEMO - MOON collaboration

- I'm working since February 10th in Osaka University with Nomachi san group.
- Installation of a 53×53 cm² plastic source and 32 K free square PMTs (4 sides).
- Trigger and DAQ electronic, HV cabling, mechanical support and light shielding.
- 1mm precision positioning.
- Special thanks for Kanamaru and Sakihuchi for their efficiency.
- Preliminary result : LED in the middle of the plate. Software correction of the gain.

February 27th 2007

