

Mirror substrates and coatings for cryogenic interferometers

Stuart Reid University of Glasgow

Overview

- Mission and objectives of STREGA:
 - <u>S</u>tudy of <u>T</u>hermal noise <u>R</u>eduction for <u>E</u>uropean <u>G</u>ravitational w<u>A</u>ve detectors
 - Lower thermal noise 10 times with respect to the second generation detectors
- STREGA to coordinate the efforts that many labs in different projects spend on Thermal Noise Research.

ILIAS Astro-Particle Physics http://ilias.in2p3.fr/				
D	ouble ?(decay	Dark Matter	
Gravitational Waves Deep U-ground				
STF (R	REGA &D)	GV (Netwo	VA orking)	Labs

STREGA - objectives

 3 Objectives: Materials, Cryogenics, Thermal Noise Selected topics

 Groups involved: Legnaro, Perugia, Florence, Urbino, Jena, Glasgow

Investigation on thermal and mechanical properties of silicon & other candidate materials e.g. SiC

- Mechanical losses
- Thermal properties
- Strength
- 1. Crystal orientation
- 2. Doping effect
- 3. Surface effect
- 4. Coatings and Diffraction Gratings
- 5. Bonding techniques
- 6. Full scale prototype

Cryogenic measurements are more time consuming than room temperature ones

The groups within M1,2,4&5 are now involved in collaborative investigations through the ILIAS project.

Legnaro - slides provided by Jean-Pierre Zendri

New materials for DUAL: the LNL activity

Material requirements:

- 1. High cross section (i.e. maximize $\ Y^2 \, / \,
 ho$)
- 2. High quality factor (Q/T> 10^8)
- 3. High thermal conductivity (ultra-cryogenic operation?)
- 4. Availability, low cost

Materials presently under investigation:

Measuring Si disc mechanical loss - nodal suspension

Si disk displacement readout

Sensitivity for both the readout about 1 nm

Experimental setup

Si disk of thickness 0.5mm - results

For almost all the measured modes the quality factor of the sample with the pyramidal hole (best achieved value 4_10⁷) have a quality factor about (10-30)% higher than the sample with drilled hole.

Sintered silicon carbide - results

- Cantilevers of different thicknesses (0.3-0.5 mm) and length (5-10 cm)
- Both optical lever and capacitive readout

Infiltrated silicon carbide C/SiC - results

Expected clamping losses order of 10⁻⁵ dominating mechanism?

C/SiC new experimental set-up

In order to reduce the clamping losses effect the samples, new samples are now thin discs (3 inch in diameter) suspended with nodal suspension.

Perugia - slides from Flavio Travasso

Cryogenic activity in Perugia

- 1. Cryogenic Coating Measurements:
- Changes in the coating _____(T): to find a change in the coating changing the temperature Measured fused SiO₂ Slabs (3 samples - provided and coated by LMA-Virgo Lyon):
 - Uncoated Slab
 - Titania doped tantala coated slab (single layer 520 nm TiO_2 doped Ta_2O_5).
 - Cobalt doped tantala coated slab (single layer 500 nm Co doped Ta_2O_5).
- 2. Fused silica Substrate cryogenic behavior
 - Experimental activity about 20 modes studied for 3 uncoated slabs
 - Theoretical activity for the amorphous material the classical laws used for the crystalline materials are not so easy to use or to support.

Cryogenic activity in Perugia

Samples

Coated silica slabs - results

10⁻³

-010-4

10⁻⁵

Investigating dissipation processes in fused silica

1. _ vs temp:

@790Hz

50

0

100

2 possible dissipation peaks observed

2. vs freq:

150

Conclusions - Perugia

SiO2 Results:

The measurements show a clear behaviour with temperature:

- an almost constant loss angle above 140K

- between 140K and 30K the loss angle has a significant increase that can be interpreted by calling for thermally activated relaxation dynamics (in multi-stable potentials)

- below 30K the loss angle starts to decrease: the thermally activated dissipation is less effective and a different dissipative mechanism starts to drive the dynamics (quantum tunnelling effects become active at very low temperature... that is quantum tunnelling assisted by thermal fluctuations)

Work in progress:

A new refined dynamical model for the interpretation of the losses in the low frequency region is required.

Florence/Urbino - slides provided by Matteo Lorenzini

Gentle Nodal Suspenion (GeNS) - 1

- Simple but innovative idea
 - Thickness < diameter \Rightarrow stable equilibrium
- Advantages w.r.t. other methods ν
 - No clamp

LASER

- Coated samples tested
- Contact surface is minimised
- All relevant parameters are measured
 - Disk-sphere friction measured with rolling mode

PHOTODIODE

- Surface roughness measured directly
- Q-dependence on contact point position

SAMPLES:

-Herasil (HOQ300) disk 75x1 mm 75x3 mm - Sapphire sphere D= 3.18, **4.75 mm** - Steel sphere D= 4.75, 5.5 mm

Gentle Nodal Suspenion (GeNS) - 2

Thermal Conductivity Measurements

From Y.S. Touloukian, E.H. Buyco, "Thermo-phy properties (1997) MRG Plenum, NY, 1970

Thermal conductivity of silicate bonds

Bonded samples: n° 3 couples of disks with 1/2" radius and 6 mm thick, produced by the Glasgow IGR group

Jena - slides provided by Ronny Nawrodt & Anja Zimmer

Experimental setup - 1

5 ... 300 K probe temperature

< 10⁻⁵ mbar residual gas pressure

arnothing 300 mm, height 500 mm

Samples

Fused Silica

- Current material of choice for interferometers
- high purity, low absorption
- excellent thermal properties low thermoelastic noise

Crystalline Quartz (1)

Chemistry: SiO₂

Quartz (cryst.), c-cut, \varnothing 3" \times 12 mm

- damping peaks
- frequency dependence visible

Crystalline Quartz (2)

Calcium fluoride (1)

Calcium fluoride (2)

Silicon (2)

silicon (100), \oslash 3" × 12 mm, boron-doped, 14886 Hz mode

- relaxation processes
- similar to those in crystalline quartz
- •investigation of the solid state physics of impurities and phonon-phononinteraction

Planned continuation

- Effect of doping concentration on mechanical loss (several samples currently polished, measurements start in april)
- phosphorus- and boron-doping (n- and p-doping), all (100)
- comparison between different orientations (100) and (111)
- all measurements between 300K and 5K
- understanding solid-state processes that cause mechanical loss
- Compare to float-zone silicon.
- crystalline quartz: investigation of the anisotropy of the mechanical damping to understand relaxation processes

Coating research on tantala

 Systematic investigation of the low temperature mechanical losses for doped tantala coatings

Glasgow

Coated silicon flexures - experimental setup.

coated (LMA) cantilever in situ

Coated silicon flexures - results 1

- Silicon properties: n-type Ph doped (resistivity 5-10 Ωcm)
- Coating properties: 0.5 μ m Ta₂O₅ doped with (14.5 ± 1) % TiO₂

Measured mechanical losses of the coated and uncoated cantilevers (4th bending mode, f ~777 Hz). Measured mechanical losses of the coated and uncoated cantilevers (5th bending mode, f ~1280 Hz).

Coated silicon flexures - results 2

• Calculated coating loss for the 4th and 5th bending modes.

 Measurements of Si cantilevers down to He temperature are now underway (lain Martin).

Ongoing research

 Investigating the mechanical loss associated with diffraction gratings and their coatings. Results suggest a negligible increase in loss associated with etching diffraction gratings on fused silica disks.

First coating run was not successful – the disks came loose from the clamp during coating and were significantly chipped – new disks are now being sent for coating from Glasgow.

 Bulk silicon measurements to 77K continue, in addition to commissioning a new nodal support.

STREGA - Conclusions for M1,2,4,5

- Currently 3 years into the ILIAS and FP6 timeline
- Results for advanced materials and coatings at cryogenic temperature coming from every group.
- Collaborative efforts underway, examples:
 - Coordination across all the labs is working well.
 - Visits/discussions between Jena & Glasgow scientists in 2005 and 2006.
 - Iain Martin (Glasgow) to travel to Jena with various coated Si cantilevers for comparative measurements and exchange techniques (3 weeks in March 2007).
 - Visits/discussions between Jena and Florence-Urbino groups in 2006.
 - Silicate bonded silicon samples fabricated in Glasgow are under study in Florence (thermal conductivity).
- Results indicate that the thermal noise associated with the dielectric coatings will set the limit to future detector sensitivity. This has caused some changes in focus within the STREGA plan.

