Background measurements in the underground labs: Gran Sasso, Modane and Boulby

Jan Kisiel

Institute of Physics, University of Silesia, Katowice, Poland

(kisielj@us.edu.pl)

(in collaboration with: J.Dorda and D.Malczewski University of Sllesia)

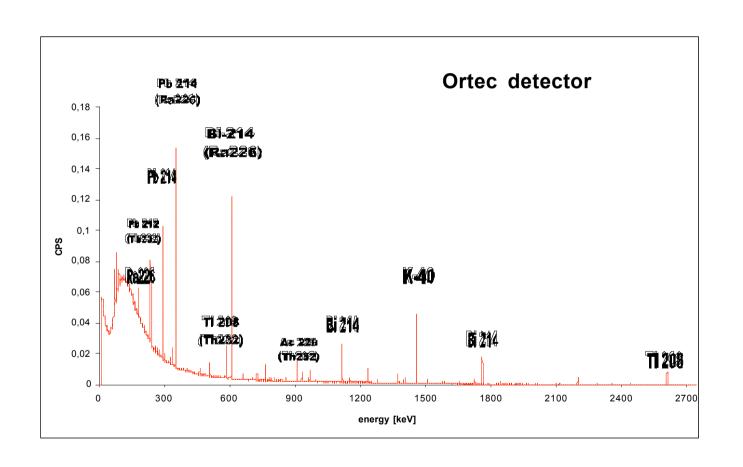
What have been done?

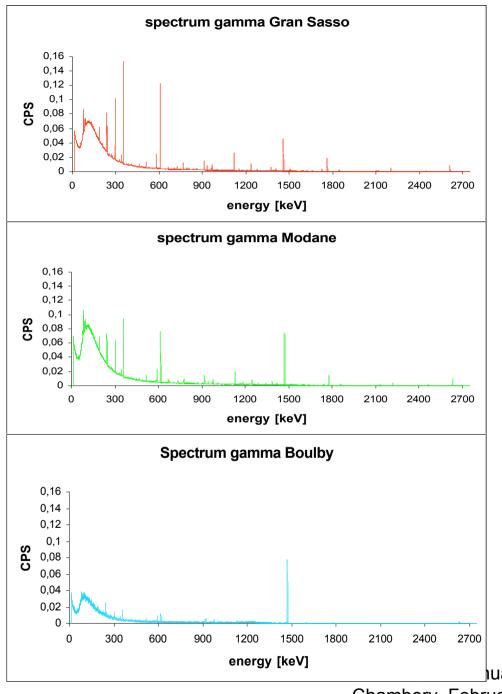
- Gran Sasso Lab. (December 2004): in-situ measurements, radon emission from the surface, water samples measurements,
- Boulby Lab. (August 2005, August 2006): in-situ measurements in 10 locations, radon emission from the surface, rock samples measurements,
- Modane (LMS) Lab. (July 2006): in-situ measurements in 6 locations, radon emission from the surface, water samples measurements, rock samples measurements.

EXPERIMENTAL SET-UP (in-situ measurements)

The radioactivity background from natural and antropogenic radionuclides has been measured *in situ* using a portable gamma-ray spectroscopy workstation (Modane and Boulby: Canberra, Gran Sasso: Ortec)

Both consists of a HPGe detector (32% efficiency, crystal length 59mm and diameter 57mm) with cryostat mounted on a tripod, multichannel buffer and a laptop. The resolutions are: 0.6keV at 122keV and 1.5keV at 1.33MeV. They differ in the software used for the: (1) efficiency calibration, and (2) determination of radionuclides and their activities.




NUCLIDE	40K	²²⁶ Ra (²³⁸ U)	²²⁸ Ac (²³² Th)
ACTIVITY (Bqkg ⁻¹)	103	1.75	1.49
UNCERTAINTY	2	0.14	0.12

Boulby, transportation hall, Canberra detector

Gamma spectrum Gran Sasso (hall B), 2004

Comparison of gamma spectra: Gran Sasso, Modane and Boulby

Integral background counting rates 50 – 2700 keV [CPS/keV*kg]				
Gran Sasso	57.68			
Modane	66.06			
Boulby	23.83			

ual Meeting,

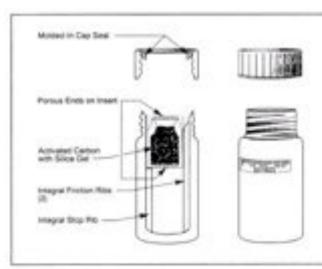
7

In-situ measurements in Gran Sasso, Modane and Boulby: net cps for three components of the spectrum.

	²¹⁴ Bi [609keV] (²²⁶ Ra)	²²⁸ Ac [911keV] (²³² Th)	⁴⁰ K [1460keV]
Gran Sasso	0.487 ± 0.002	0.048 ± 0.003	0.268 ± 0.002
Modane	0.322 ± 0.003	0.062 ± 0.004	0.438 ± 0.003
Boulby	0.042 ± 0.002	0.023 ± 0.002	0.470 ± 0.003

Results of in situ measurements in Gran Sasso, Modane and Boulby (M1 ORTEC software used for the spectra analysis)

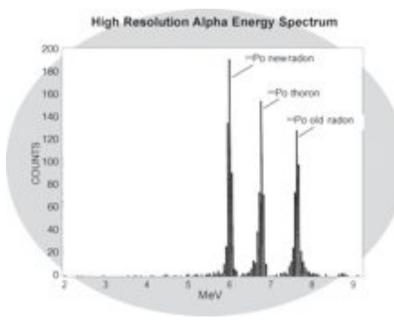
	Izotop		Gran Sasso (Italy) Hall B (2004)	Modane (France) Hall NEMO (2006)	Boulby (UK) Transport hall (2006)
			[Bq/kg]	[Bq/kg]	[Bq/kg]
⁴⁰ K	K40	1460 keV	92.4 ± 1.1	150.5 ± 2.9	162.0 ± 2.5
	Pb212	238 keV	7.9 ± 0.2	7.8 ± 0.4	2.8 ± 0.5
²³² Th	Ac228	338 keV	7.7 ± 1.3	8.6 ± 2.4	5.7 ± 3.5
	Ac228	911 keV	7.3 ± 0.4	7.4 ± 1.0	2.7 ± 0.6
	Pb214	295 keV	32.5 ± 0.5	22.2 ± 1.8	4.7 ± 1.9
	Pb214	352 keV	30.8 ± 0.7	21.4 ± 0.4	3.3 ± 0.5
²²⁶ Ra	Bi214	609 keV	30.3 ± 0.3	21.0 ± 0.3	2.6 ± 0.5
	Bi214	1120 keV	29.8 ± 1.2	21.5 ± 0.7	6.7 ± 3.3
	Bi214	1764 keV	28.0 ± 0.5	22.3 ± 1.0	2.6 ± 0.3


²²²Rn concentration in the air

(2 methods of measurement)

- Pico-Rad method (Insta-Fluor scinitilator, activate carbon, 48h exposure, 12 mesurements in Halls A, B and C of Gran Sasso Lab)
- Durridge RAD7 detector in sniff mode, 48-hours protocol, 1 hour intervals, measurements in Modane and Boulby Labs

LSC COUNTER


Active Carbon Detector **PicoRad**

Air Inlet Green Air Pump High Voltage Detector Test Chamber

RAD7

RAD7 detector

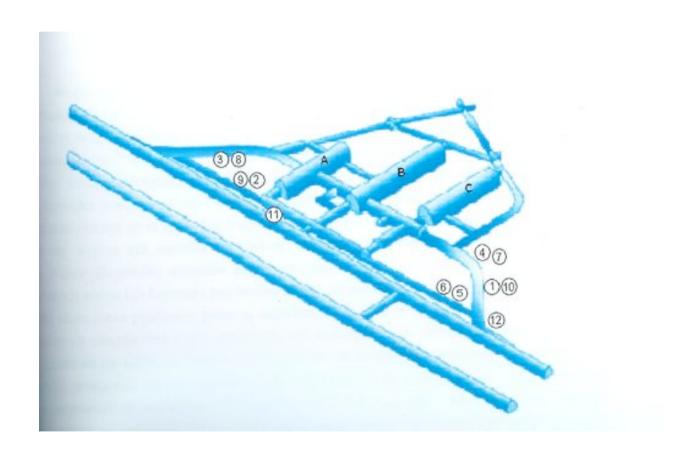
²²² Rn [Bq/m ³]	Boulby			Rad 7
	Hall JIF –left	Hall JIF center1	Hall JIF center2	Hall transport.
average	2.44 ± 0.39	2.79 ± 0.47	3.71 ± 0.41	4.70 ± 0.41
max	3.60	4.50	4.79	9.57
min	0.30	1.64	2.69	2.70
²²² Rn [Bq/m³]	Modane			Rad 7
	Hall NEMO	Hall electr.	Hall EDELWISE	Hall HPGe
average	7.64 ± 0.38	11.24 ± 0.56	10.01 ± 0.51	10.54 ± 0.57
max	13.8	18.0	18.0	16.2
min	2.39	3.6	5.4	6.58

Gran Sasso			Hall	В		PicoRad
	1	2	3	4	5	6
Bq/m ³	170.4± 5.0	174.0 ± 5.0	189.6 ± 5.2	193.2 ± 5.3	297.6 ± 7.7	194.4 ± 5.3

	Hall A			Hall	С	
	7	8	9	10	11	12
Bq/m ³	189.6 ± 5.2	187.2 ± 5.2	160.8 ± 4.8	249.6 ± 7.0	246.0 ± 6.9	324.0 ± 8.1

LNGS measurements, Dec'2004

²²²Rn concentration in the water


Liquid scintilator method (measured with Wallac 1414 WinSpectral liquid sintillation Counter, in Katowice),

12 measurements – see map)

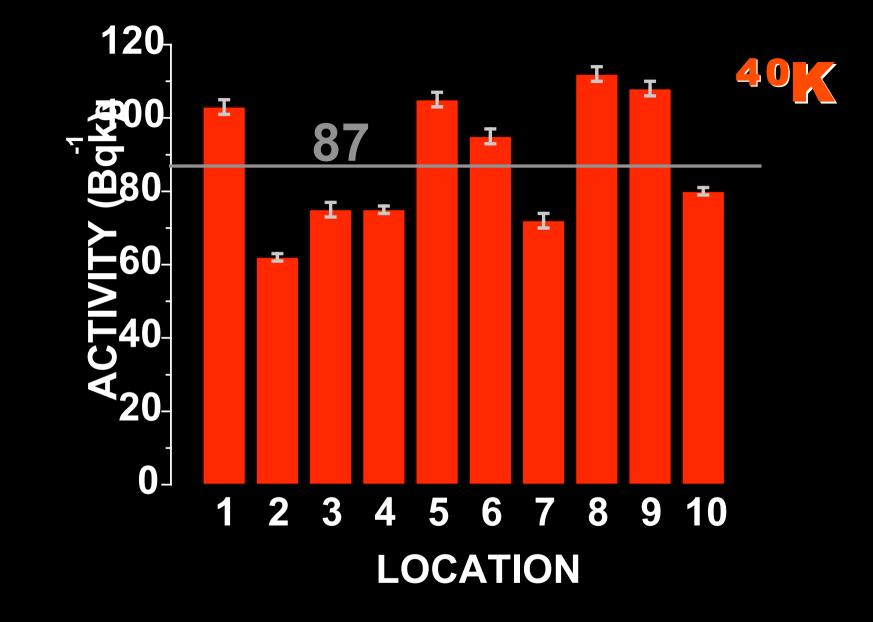
Sample	1	10	2	9	3	8
Bq/dm ³	6.1 ± 0.4	6.5 ± 0.4	9.3 ± 0.5	9.4 ± 0.5	4.4 ± 0.3	4.3 ± 0.3

Sample	4	7	5	6	11	12
Bq/dm ³	11.4 ± 0.6	10.2 ± 0.5	5.8 ± 0.4	6.0 ± 0.5	5.0 ± 0.4	5.4 ± 0.4

LNGS, Dec'2004: map of water samples measurements

²²⁶Ra and ²²⁸Ra in the water

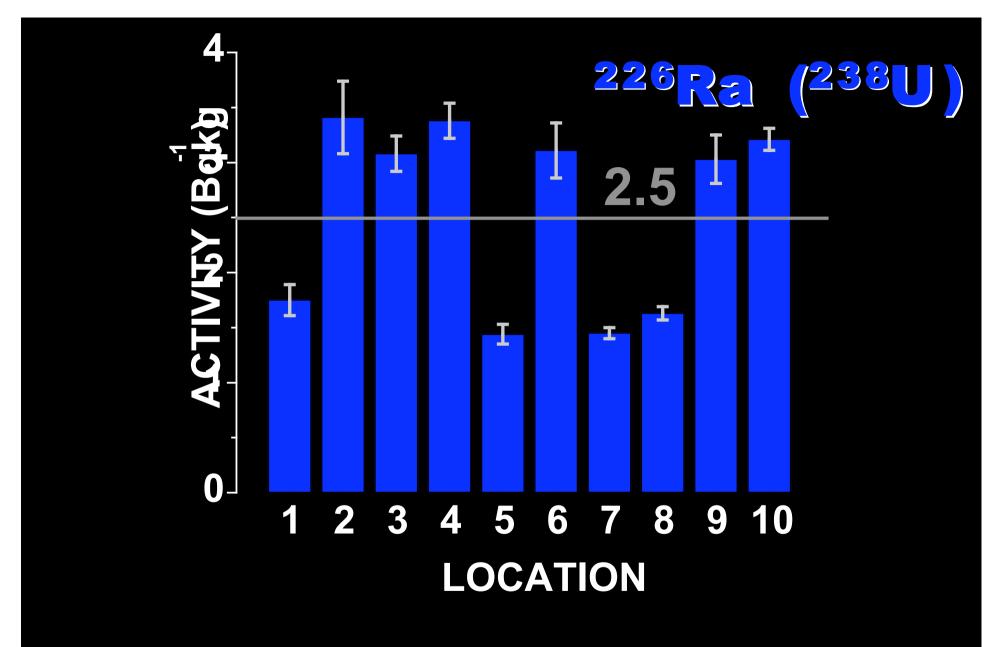
The water samples for the ²²⁶Ra and ²²⁸Ra concentration measurements were collected and transported to the laboratory. The radium isotopes have been removed from the water by using the method of co-precepitation barium carrier and by removing daughters. Precepitated sediments of BaSO4 and RaSO4 were mixed with scintillation gel in the scintillation vial, and were analyzed with Winspectral Liquid Scintillation Counter (LSC).


	²²⁶ Ra [Bq/dm ³]	²²⁸ Ra [Bq/dm ³]
MODANE sample 1 Hall "NEMO"	0.012 ± 0.002	0.015 ± 0.005
MODANE sample 2	< 0.008	0.015 ± 0.005
Gran Sasso	< 0.025	< 0.06

Future plans (2007):

One or two in-situ measurements in 2007 (Canfranc and Gran Sasso):

- use of two portable detectors: EG&G (ORTEC) and GX3020 (Canberra Industries),
- possibility of measurements in different geometries, with the minimum detectable activity of about 0.1Bq/kg,
- radon emission measurements,
- rock and water samples measurements.



40
K_{outside} = 93 ± 16 40 K_{inside} = 85 ± 18 40 K_{LAB} = 93 ± 13

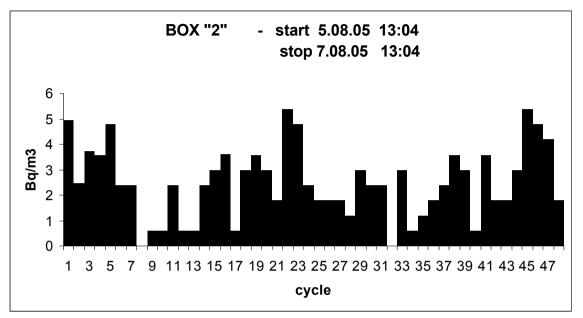
$$^{40}K_{\text{inside}} = 85 \pm 18$$

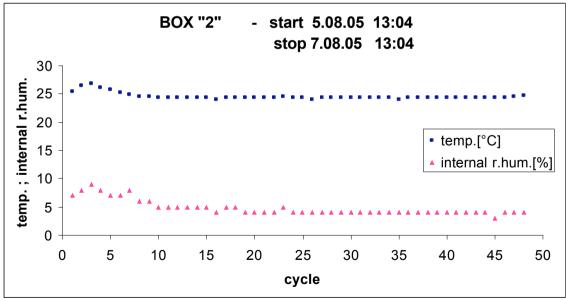
$$^{40}K_{LAB} = 93 \pm 13$$

 226 Ra_{outside} = 1.8 ± 0.6 226 Ra_{inside} = 3.2 ± 0.2 226 Ra_{LAB} = 3.2 ± 0.1

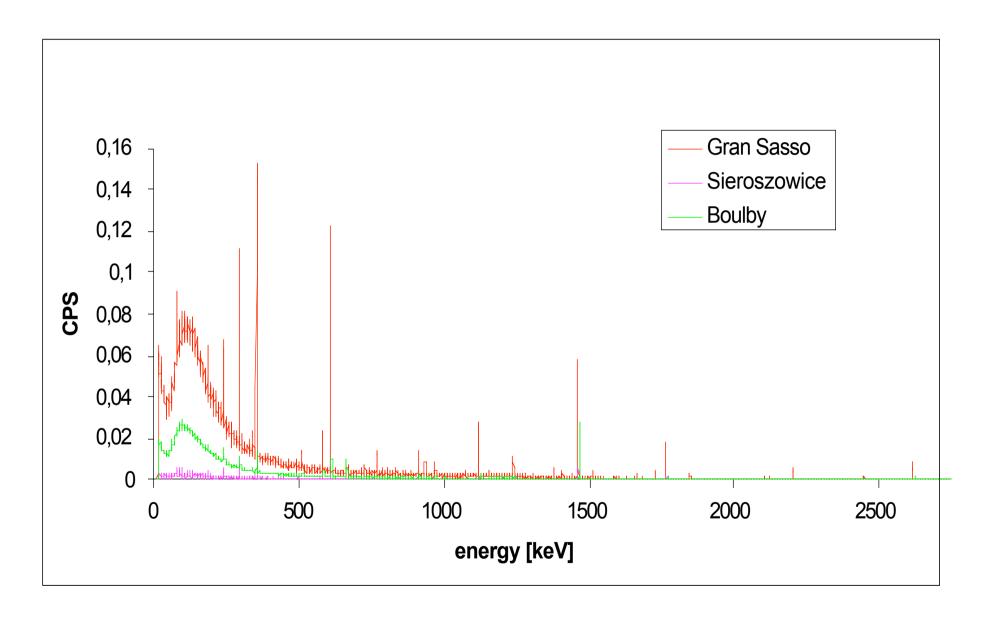
Radon measurements in Boulby: results

- Mean (from 48 hours measurement) values:
 - H area: 2.3±1.7Bq/m³
 - JIF area 1 (Box2): 2.5±1.4Bq/m³
 - JIF area 2 (transport hall): 4.2±1.9Bq/m³
 - JIF area 3 (main lab): 2.5±1.9Bq/m³
- Conclusions:
 - mean values are "practically" the same

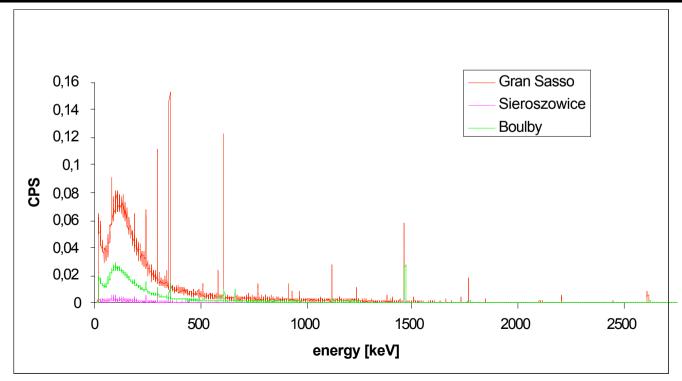

Radon ²²²Rn measurements in Boulby:


- Durridge RAD7 detector has been used in its sniff mode:
 - looks at the 6MeV alpha particles from the ²¹⁸Po decay,
 - variations of radon emission has been monitored by using 48-hours protocol, 1 hour intervals,
 - checks of "internal humidity" (detector works correctly if internal humidity < 10%)
 - mesurements in 4 points: 3 in JIF area + 1 in H area.

In situ measurements: GS, Boubly and Sieroszowice


	²²⁶ Ra	²¹⁴ Pb	²¹⁴ Bi	²¹² Pb	²²⁸ Ac	⁴⁰ K
	Bq/kg	Bq/kg (²²⁶ Ra)	Bq/kg (²²⁶ Ra)	Bq/kg (²³² Th)	Bq/kg (²³² Th)	Bq/kg
Gran Sasso	35 ± 3	32 ± 1	29 ± 1	7.9 ± 0.2	7.2 ± 0.5	94 ± 1
Boulby	< 8	5.3 ± 1.8	4.5 ± 1.2	2.1 ± 0.2	2.6 ± 0.8	89.8 ± 1.3
Sieroszowice	< 8	4.2 ± 2.3	2.5 ± 0.9	0.8 ± 0.4	0.7 ± 0.3	9.2 ± 1.7

Radon measurements: Boulby 2005



ILIAS, 4th Annual Meeting, Chambery, February 28th 2007

Net Count Rate [cps] – in situ mesurements

	Peak	Peak	Peak
	Bi214-609 keV (Ra226)	Ac228-911 keV (Th232)	K40 - 1460 keV
Gran Sasso	0.487 ± 0.002	0.048 ± 0.003	0.268 ± 0.002
Boulby	0.068 ± 0.002	0.016 ± 0.001	0.262 ± 0.002
Sieroszowice	0.038 ± 0.003	0.006 ± 0.001	0.020 ± 0.003

In situ measurements: GS, Boulby, Sieroszowice Integral background counting rates

Energy [keV]	Gran Sasso	Boulby	Sieroszowice
50-2700	57.68 (0.05)	17.00 (0.01)	2.30 (0.02)

Wyniki z pomiarów in situ

	²²⁶ Ra	²¹⁴ Pb	²¹⁴ Bi	²¹² Pb	²²⁸ Ac	⁴⁰ K
	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg
Boulby						
Hala B	35 ± 3	32 ±1	29 ± 1	7.9 ± 0.2	7.2 ± 0.5	94 ±1
Sieroszowice	< 8	4.2 ± 2.3	2.5 ± 0.9	0.8 ± 0.4	0.7 ± 0.3	9.2 ± 1.7

Integral background counting rates

Energia [keV]	Gran S. h. cz. I	Gran S. h. cz. II	Siero- szowice	Boulby
40-2700	49.80	52.20	2.02	0.0
40-630	43.27	45.22	1.69	0.0
630-700	0.67	0.68	0.03	0.0
700-2700	5.85	6.10	0.30	0.0