#### Scintillating Bolometers for Double Beta Decay

Stefano Pírro INFN & Università di Milano-Bicocca

- Double Beta Decay
- Thermal detectors
- · Cuoricino
- New bolometric techniques
- · Conclusions









#### **Experimental strategies**

#### Detect the two electrons with a proper nuclear detector (direct search)



#### **Thermal Detectors**





Detect the two electrons with a proper nuclear detector (direct search)

desirable features

- High energy resolution Bolometers are comparable with Ge detectors
- Low background

It is a problem for all the detectors...

- Large source (many nuclides under control) The bolometer is made off a  $\beta\beta$  emitter
- Event discrimination method

This is the purpose of this talk.....







#### INFN- Laboratori Nazionali del Gran Sasso

#### CUORE R&D (Hall C)

#### Cuoricino (Hall A)



### Assembling Detectors....



Almost all the operations done in nitrogen atmosphere





# Assembling the Tower...





## **Overall Layout**

- 4.2 K Plate (+ vacuum shield)

1.2 K Plate0.6 K Plate (+ IR shield)0.05 K Plate (+ IR shield)

0.007 K (Mixing Chamber)

Roman Lead





# Results on <sup>130</sup>Te bb-ov decay



#### Sources of background

There are three main sources of background



 $Q > E_{\beta\beta}^*$ Internal contaminations

**External contaminations** 

\* tagged with delayed anticoincidence cuts with calorimetric technique (<sup>232</sup>Th & <sup>238</sup>U)

Surface contaminations

 $> \mu$  - spallation

low energy neutrons

Smeared  $\alpha$ -particles

 $E_{v} > E_{\beta\beta}$ 

 $(n, \gamma)$ 

High energy neutrons

Can be avoided (at least in principle) with appropriate shielding



#### Surface & Bulk Contaminations : Experimental spectra



Environmental "underground" Background: <sup>238</sup>U and <sup>232</sup>Th trace contaminations

Furthermore a not negligible part of the background can arise from high energy neutrons from  $\mu$ -spallation



#### α/n - background suppression : Light-detection

A powerful tool in order to discriminate  $\alpha$  particles is the scintillation light

The idea is to use a scintillating crystal as bolometer and to measure <u>*both*</u> (heat+light) channels Thanks to the different Quenching Factor  $\alpha$ ,  $\beta/\gamma$ , and <u>neutrons</u> can be easily identified However, for a large and competitive experiment, some points need to be addressed







## **Calibration results on CdWO**<sub>4</sub>



2.9% FWHM is the best result ever achieved with  $CdWO_4$  as scintillator

#### Background measurement on CdWO

During last year a long Bg measurement was performed together with CUORE detectors





## CdWO<sub>4</sub> - some considerations - 2



**FWHM** @ 2615 improves by ~ 40% !!!!!

## CaMoO<sub>4</sub>-17.4 g sample







## **CaF2** Preliminary results



There is a lack of an actual calibration due to the "lightness" of the compound

## Other small-size crystal tested

Other small size DBD crystals were tested within in the last 2 years

| Good Scintillation light | Poor Scintillation light | No Scintillation light |
|--------------------------|--------------------------|------------------------|
| PbMoO <sub>4</sub>       | ZrO <sub>2</sub>         | MgMoO <sub>4</sub>     |
| ZnSe                     | LiMoO <sub>4</sub>       | TeO <sub>2</sub>       |
| CdMoO <sub>4</sub>       |                          |                        |
| SrMoO <sub>4</sub>       |                          |                        |
| CdWO <sub>4</sub>        |                          |                        |
| CaF <sub>2</sub>         |                          |                        |

Other types of Molybdates are "ongoing"

#### Conclusions







# Background Suppression : Bulk contaminations



*Thanks to Bi-Po's and <u>Beatles</u> internal contaminations do not play a significant role* Does not hold for <sup>234</sup>Pa (Q=2195 keV)

| $C_{mm}(Y^{-1})$                   | $\langle m_{\beta\beta}\rangle~({\rm eV})$ | Method                              | Reference                                |
|------------------------------------|--------------------------------------------|-------------------------------------|------------------------------------------|
| $1.12 \times 10^{-13}$             | 0.024                                      | QRPA                                | Muto et al (1989), Staudt et al (1990)   |
| $6.97 \times 10^{-14}$             | 0.031                                      | QRPA                                | Suhonen et al (1992)                     |
| $7.51 \times 10^{-14}$             | 0.029                                      | number-projected QRRA               | Subonen et al (1992)                     |
| $7.33 \times 10^{-14}$             | 0.030                                      | QRPA                                | Pantis et al (1996)                      |
| $1.18 \times 10^{-13}$             | 0.024                                      | QRRA                                | Tomoda (1991)                            |
| $1.33 \times 10^{-13}$             | 0.022                                      | QRPA                                | Aunola and Suhonen (1998)                |
| $8.27 \times 10^{-14}$             | 0.028                                      | QRRA                                | Barbero et al (1999)                     |
| $1.85\text{-}12.5{\times}10^{-14}$ | 0.059-0.023                                | QRPA                                | Stoica and Klapdor-Kleingrogthaus (2001) |
| $1.8 - 2.2 \times 10^{-14}$        | 0.060 - 0.054                              | QRRA                                | Bobyk et al (2001)                       |
| $8.36 \times 10^{-14}$             | 0.028                                      | QRPA                                | Civitarese and Suhonen (2003)            |
| $1.42 \times 10^{-14}$             | 0.068                                      | QRRA with np pairing                | Pantis et al (1996)                      |
| $4.53 \times 10^{-14}$             | 0.038                                      | QRPA with forbidden                 | Rodin <i>et al</i> (2003)                |
| $8.29 \times 10^{-14}$             | 0.028                                      | RQRPA                               | Faessler and Simkovic (1998)             |
| $1.03 \times 10^{-13}$             | 0.025                                      | RQRRA                               | Simkovic et al (1999)                    |
| $6.19 \times 10^{-14}$             | 0.032                                      | RQRRA with forbidden                | Simkovic et al (1999)                    |
| $5.5-6.3 \times 10^{-14}$          | 0.034 - 0.032                              | RQRRA                               | Bobyk <i>et al</i> (2001)                |
| $2.21 - 8.83 \times 10^{-14}$      | 0.054 - 0.027                              | RQRPA                               | Stoica and Klapdor-Kleingrothaus (2001)  |
| $3.63 \times 10^{-14}$             | 0.042                                      | RQRPA with forbidden                | Rodin <i>et al</i> (2003)                |
| $2.75 \times 10^{-14}$             | 0.049                                      | Full RQRPA                          | Simkovic et al (1997)                    |
| $3.36 - 8.54 \times 10^{-14}$      | 0.042 - 0.028                              | Full RQRPA                          | Stoica and Klapdor-Kleingrothaus (2001)  |
| $6.50\text{-}9.21{\times}10^{-14}$ | 0.032 - 0.027                              | Second QRPA                         | Stoica and Klapdor-Kleingrothaus (2001)  |
| $2.7-3.2 \times 10^{-15}$          | 0.155 - 143                                | Self-consistent QRPA <sup>*</sup>   | Bobyk et al (2001)                       |
| $2.88 \times 10^{-13}$             | 0.015                                      | VAMPIR*                             | Tomoda et al (1986)                      |
| $1.58 \times 10^{-13}$             | 0.020                                      | Shell-model truncation <sup>*</sup> | Haxton and Stephenson (1984)             |
| $6.87 	ext{-}15.7 	imes 10^{-14}$  | 0.031-0.020                                | Shell-model truncation <sup>*</sup> | Engel <i>et al</i> (1989)                |
| $1.90 \times 10^{-14}$             | 0.059                                      | Large-scale shell model             | Caurier et al (1996)                     |

#### N(A,Z+2)

#### e mass

es





## The energy resolution





#### **Choice of the Isotope**

$$S = \ln 2 N_A \frac{a.i.}{A} \varepsilon_{1/2} \frac{Mt}{B\Delta E}$$





#### **Thermal Detectors-stability**





A fundamental issue is to reduce vibrations (damping)



# **CUORICINO TO CUORE**

CUORICINO proved the feasibility of a large bolometric array with the tower-like structure Detector performances are not affected by the increase in crystal size (from 340 g to 760 g)



