Liquid argon shielding for GERDA

S. Schönert MPIK Heidelberg ILIAS general meeting Chambery, 28 February 2007

Acknowledgements

- Experimental work presented here have been carried out in the framework of the R&D for the GERDA double beta decay experiment
- Publications under preparation:
 - LAr purification: G. Zuzel, H. Simgen
 - Operations of HP-Ge detectors in with LAr scintillation read out: P. Peiffer, M. Di Marco
 - LAr scintillation studies: P. Peiffer, T. Pollmann, A. Smolnikov, S. Vasieliev
 - Ar-36 0vECEC: O. Chkvorets, M. Bernabe-Heider, K. Gusev
- Work partly supported by ILIAS/IDEA

Outline

- Reminder: baseline design of GERDA
 - Operation of HP Ge in LAr as **passive** shield
- Radiopurity of LAr
 - Radon
- LAr scintillation
 - Active veto system
 - Phtoelectron yield with optimized WLS and reflectors
 - Pulse shape studies (α , γ/β ,neutrons) of LAr and with Xe doping
- 1 m_LAr prototype set up at LNGS in GERDA DetLab
- Outlook and ILIAS-next/JRA2 WPs

Scope of this talk

('spirit of ILIAS-next JRA2')

- Discuss LAr shield (not Ge-76 detectors)
- LAr as shield against nuclear radiation:
 - High purity & high density (1.4 g/cm_)
 - Cryogenic cooling for HP-Ge detectors
 - Scintillation light to discriminate backgrounds Option

GERDA

baseline

phase

- Pulse shape characteristics for particle id
- R&D relevant not only for GERDA, but also for DM and next generation LAr detectors

⁷⁶Ge DBD: Sensitivity assuming no events in ROI

New experiments:

⇒Background reduction by factor $10^2 - 10^3$ required w.r. to precursor exps. ⇒Degenerate mass scale $O(10^2 \text{ kg·y}) \Rightarrow$ Inverted mass scale $O(10^3 \text{ kg·y})$

'Bare' ^{enr}Ge array in liquid argon (nitrogen)
Shield: high-purity liquid argon (N) / H₂O
Phase I: ~18 kg (HdM/IGEX diodes)
Phase II: add ~20 kg new enr. Detectors with segmented electrodes; total ~40 kg

Phase I+II (100 kg years): Physics goals: degenerate mass range Technology: study of bgds. and exp. Techniques Background: 10⁻³ counts/(kg·y·keV)

Depending on physics results of Phase I+II:

Phase III: 1 ton exp. to explore inv. hierarchy mass range ~10 meV **Background:** 10^{-4} counts/(kg·y·keV) \Rightarrow advanced reduction techniques

Operation of HP-Ge in LAr (detector test stand in GERDA DetLab at LNGS)

1.6 kg non-enriched Prototype detector

Steel dewar with
70 liter of argon
Modest shield:2
cm lead
Not a lowbackground steup!!

Measurements with 1.6 kg detector in LAr test setup in GERDA DetLab at LNGS

First 0vECEC limit on ³⁶Ar

Isotope	Abundance, %	Mode	$T_{1/2},y$	Ref.	
³⁶ Ar	0.336	0/ECEC	$1.9\cdot 10^{18}~(68\%)$	this work	
$^{50}\mathrm{Cr}$	4.345	$(0\nu+2\nu)EC\beta^+$	$1.3 \cdot 10^{18} (95\%)$	Bikit et al. (2003) [12]	
⁶⁴ Zn	48.63	0r/ECEC	$1.0\cdot 10^{18}~(68\%)$	Danevich et al. (2005) [13]	
		$0\nu EC\beta^+$	$1.3 \cdot 10^{20} (90\%)$	Kim et al. (2003) [13]	
$^{74}\mathrm{Se}$	0.89	0r/ECEC	$6.4\cdot 10^{18}~(90\%)$	Barabash et al. (2006) [14]	
		$(0\nu+2\nu)EC\beta^+$	$1.9\cdot 10^{18}~(90\%)$		
106Cd	1.25	2ν ECEC	$4.8\cdot 10^{19}\;(90\%)$	Stekl et al. (2006) [15]	
$^{108}\mathrm{Cd}$	0.89	0r/ECEC	$2.5 \cdot 10^{17} \ (68\%)$	Danevich et al. (2003) [16]	
$^{112}\mathrm{Sn}$	0.97	$(0\nu+2\nu)EC\beta^+$	$1.5 \cdot 10^{18} \ (68\%)$	Kim et al. (2003) [17]	
$^{120}\mathrm{Te}$	0.09	2ν ECEC	$9.4\cdot 10^{15}~(90\%)$	Kiel et al. (2003) [18]	
¹³⁰ Ba	0.106	$0\nu EC\beta^+$	$2.0 \cdot 10^{17} (90\%)$	Cerulli et al. (2004) [19]	
¹³⁶ Ce	0.185	2±ECEC	$4.5\cdot 10^{16}\;(68\%)$	Belli et al. (2003) [20]	
$^{138}\mathrm{Ce}$	0.251	2ν ECEC	$6.1\cdot 10^{16}\;(68\%)$	-"-	
$^{180}\mathrm{W}$	0.12	0#ECEC	$1.3 \cdot 10^{17} \ (68\%)$	Danevich et al. (2003) [21]	

This work: >1.9 10¹⁸ years (68% C.L.) (not bad for detector test!)

Results of recent experiments (2003-2006) searching for ECEC transitions 10¹⁶ -10¹⁹ y

N.B.: Theory: 0ν ECEC not competitive compared to $0\nu\beta\beta!$

LAr radiopurity: Measurement of ²²²Rn

Requirement for GERDA: 0.5 μ Bq/m_ (STP) or less than 1 ²²²Rn atom/m³ \Rightarrow 10⁻⁴ cts/(kg keV year) at Q_{ββ} in GERDA

Mobile Radon Extraction Unit (MoREx)

LAr radiopurity: ²²²Rn concentration in LAr

Date	Quality	Sample size	²²² Rn activi when measured	ity [mBq/m ³] after production
29.09.04	Ar 4.6	117 m^3	2.9 ± 0.2	> 8
04.11.04	Ar 4.6	141 m^3	0.20 ± 0.02	
08.06.05	Ar 5.0	200 m^3	6.0 ± 0.1	8.4 ± 0.2
21.11.05	Ar 5.0	85 m^3	0.048 ± 0.004	
28.11.06	Ar 5.0 (GS)	4 m^3	< 0.020	
13.06.05	Ar 6.0	104 m^3	0.11 ± 0.01	0.38 ± 0.02

Best: <20 μBq/m_ (WARP, long storage time)

Rn emanation of SOL storage tank 6 μBq/m_ (STP) for BOREXINO LAKN; best: 1 μBq/m_ worst: ~100 μBq/m_ (STP)

LAr purification (²²²Rn)

Purification of N₂ in liquid phase adsorption on activated charcoal

 \Rightarrow ²²²Rn <0.5 µBq/m³ (STP) at 100 m_ (STP) / hour production rate for BOREXINO

Argon (laboratory measurements):

Reduction factors (work is ongoing): •>2700 / kg of charcoal adsorber (gas phase, 150 g trap) •~240 / kg (liquid phase, 60 g trap)

Strategy how to meet purity specs:

Selection of tanks with low emanation
Select supplier & define filling procedure
Wait until initial Rn decays
Active cooling of experimental cryostat
Purification unit (for refilling)

 \Rightarrow^{222} Rn <1 µBq/m³ (STP)

N.B.³⁹Ar/⁴¹Ar no issue for DBD; argon more challenging than nitrogen!

Well known: LAr scintillates!

LAr veto: physics principle

LArGe@MPI-K: Schematic system description

- Dewar _29 cm, h=65 cm (43 L total volume)
- Light detection: WLS (VM2000 + PST/TPB) + PMT(8", ETL 9357-KFLB)
- Active volume _20 cm, h=43 cm

≈ 19 kg **LAr** (13,5 L)

• Shielding: 5 cm lead (+ 10 cm BP for n) +15 mwe underground

LArGe at MPIK-Heidelberg

LAr veto: a simple case ¹³⁷Cs : single γ line at 662 keV

full energy peak : no suppression with LAr veto

Compton continuum: suppressed by LAr veto

LAr veto: a simple case ¹³⁷Cs : single γ line at 662 keV

LAr veto: 60Co

LAr veto: ²³²Th

LAr veto: ²³²Th

comparison with Monte-Carlo

Spectroscopic performance of LAr spectrometer

Pulse shapes discrimination

AmBe (neutron+gamma) & Th228 (gamma) sources Projection with threshold 60 keV

Xe admixtures to Ar: pulse shape studies

Xe admixtures to Ar: pulse shape studies

Under study: can small Xe admixtures improve pulse shape discrimination?

Xe admixtures to LAr: spectroscopic performance

LAr (+ Xe) vs Nal (Tl) Th228 source (3 kBq) Amplification = 50 x0,683 Spectrum accumulated with MCA

20 kg LAr: ∆E/E **7,5 % at 1 MeV** (similar to 3" **Nal(Tl)**)

Next steps

✓ Ø = 90 cm \Rightarrow no significant escape of LAr scintillation ✓ h = 200 cm, volume = 1000 L ~ 1.4 ton of LAr ✓ can fit 9 crystals ✓ shield: 15 cm Cu/10 cm Pb/23 cm Steel/20 cm PE ✓ 9 PMT's 8" (ETL type K9357)

Example:

Background suppression for contaminations located in detector support

LAr pulse shape to study bgd sources (beta/gamma, alpha, neutrons)Investigate DM potential!

Combining LAr suppression and electrode segmentation of Ge diode

Summary/Outlook

- GERDA baseline design: LAr as passive shielding (1.4 g/cm_) under construction ⇒ bgd index: <10⁻³ cts/(keV kg y)
- R&D for a 1 ton Ge experiment ongoing in parallel \Rightarrow bgd index: <10⁻⁴ cts/(keV kg y)
- Close links with
 - LAr / LXe DM search
 - next generation LAr detectors (e.g. Laguna) [idea: doping with Xe-136 ⇒ DBD experiment with multi-ton Xe target]
- ILIAS-next plans (JRA2):
 - WP2 NOBLE LIQUID AND GAS DETECTORS
 - TASK 2.2 ADVANCED METHODS OF LIGHT READOUT
 - TASK 2.3 IONISATION AND SCINTILLATION PROCESSES AT KEV ENERGIES
 - TASK 2.5 ADVANCED STUDY OF PULSE SHAPE PROPERTIES OF LAR SCINTILLATION LIGHT
 - TASK 2.6 PROPAGATION OF XUV PHOTONS IN LIQUID ARGON
 - WP3 ADVANCED SEMICONDUCTOR DETECTORS WITH ACTIVE AND PASSIVE BACKGROUND CONTROL
 - TASK 3.1 NOVEL LIQUID ARGON ACTIVE VETO SYSTEM FOR GE DETECTORS
 - TASK 3.3 ADVANCED PULSE SHAPE ANALYSIS IN GE AND LARGE HYBRID DETECTORS
 - TASK 3.4 OPTIMIZED ELECTRODES SEGMENTATION SCHEMES FOR Ge AND CdZnTe DETECTORS FOR BACKGROUND SUPPRESSION AND PARTICLE ID

EXTRA SLIDES

Date	Quality	Sample size	²²² Rn activi when measured	ty [mBq/m ³] after production
29.09.04	Ar 4.6	$117~\mathrm{m}^3$	2.9 ± 0.2	> 8
04.11.04	Ar 4.6	141 m^3	0.20 ± 0.02	
08.06.05	Ar 5.0	$200 \ {\rm m}^3$	6.0 ± 0.1	8.4 ± 0.2
21.11.05	Ar 5.0	85 m^3	0.048 ± 0.004	
28.11.06	Ar 5.0 (GS)	4 m^3	< 0.020	
13.06.05	Ar 6.0	104 m^3	0.11 ± 0.01	0.38 ± 0.02

Tank		Emanation rate [mBq]	Spec. emanation rate $[mBq/m^3]$	Expected conc. [mBq/m ³]
LAr transport tank for 6.0 quality only	0.67	42 ± 2	63	0.08
LAr storage tank for 5.0 quality [*]	3	177 ± 6	59	0.07
LN ₂ storage tank for 7.0 quality only	3	2.7 ± 0.3	0.9	0.001
LN ₂ storage tank for 6.0 quality only	16	65 ± 6	4	0.005
LAr storage tank for 4.0 quality	0.3	~ 33	~ 110	~ 0.13
LAr storage tank for 5.0 quality [*]	3	~ 38	~ 13	~ 0.015
LAr storage tank for 5.0 quality (GS)	5	~ 16	~ 3.2	< 0.02

comparison to Monte-Carlo

Bare HP-Ge detector operated in LAr

AmBe (neutron+gamma) & Th228 (gamma) sources

