

ET: Einstein Telescope

Michele Punturo INFN Perugia On behalf of the ET design study team

Evolution of the current GW detectors

- Current Gravitational Wave interferometric detectors have a well defined evolution line in the next 5-7 years
 - LIGO just completed its S5 scientific run
 - Virgo completed in October 07 its first long scientific run in parallel with LIGO
 - Both the detectors are in upgrade/commissioning mode to implement their 1.5 generation upgrade step (Virgo+, enhanced LIGO)
 - GEO is covering ("astrowatch" mode) the down time of LIGO and Virgo in collaboration with the resonant bar detectors
- ... see G.Losurdo Talk

1st generation GW detectors sensitivities

Advanced detectors

- Enhanced detectors are a step toward the realization of the 2nd generation detectors ("advanced")
 - Also GEO will participate to the network of enhanced detectors with an upgraded version, "specialized" in the high frequency regime thanks (mainly) to the signal recycling technology
 - GEO HF
 - They are based on "small" changes of the current detectors with available technologies that anticipate the next step
- Advanced detectors will be online in the >2013 timeslot
 - They will be based on known technologies currently under preliminary engineering phase
 - High power laser (~200W) and compliant optics
 - Lower thermal noise mirrors (substrates and coatings)
 - Lower thermal noise suspensions (FS monolithic suspensions)
 - Better seismic isolation
 - Active filtering in LIGO
 - Focused improvements of the Virgo Super-Attenuator
 - Signal recycling

Detection progresses

NS-NS (1.4M_s): 13 \Rightarrow 15/50 \Rightarrow 120/170 Mpc **Credit:** Richard Powell, Beverly Berger. From LIGO presentation G050121

3rd generation detectors

- Second generation detectors:
 - Will permit the detection of Gravitational Waves (GW)
 - Will open the era of the GW astronomy
 - Will be the "core business" of the next decade in experimental GW research
- But can we look beyond?
 - Precision GW astronomy needs high SNR to determine the parameters of the astrophysical process
 - Interesting phenomena involves massive bodies that requires low frequency sensitivity in GW detectors
 - We need to think to 3rd generation GW detectors

Objectives of a 3 rd generation GW detectors

From detection and initial GW astronomy to precision GW astronomy

- Fundamental Physics: Test general relativity in the strongly non-linear regime
 - Initial and advanced detectors won't have the sensitivity required to test strong field GR (too low SNR)
 - Most tests are currently quoted in the context of LISA, but in a different frequency range
 - We need to have good enough SNR for rare BBH mergers which will enable strong-field test of GR
- Black hole physics:
 - What is the end state of a gravitational collapse?
- Astrophysics: Take a census of binary neutron stars in the high red-shift Universe
 - Adv VIRGO/LIGO might confirm BNS mergers, possibly provide links to γ -ray bursts
 - 3rd generation GW detectors could do much more: see different classes of sources (NS-NS, NS-BH) and contribute to resolve the enigma in the variety of γ-ray bursts

How to arrive to an European 3rd generation GW Observatory?

- Long preparatory path, already started:
 - ILIAS played a determinant role:
 - ILIAS-GW-WP3 realized the correct environment where to discuss, at European level, the evolution of the current detectors and where to merge the efforts addressed to the proposition of a 3rd generation GW observatory
 - It supported the meetings, the workshops and the preliminary studies
 - All the ET proposal writing meetings have been supported by WP3
 - WP3 has been also the core of the new WG6 (GW) in the ASPERA road-mapping activity
 - ILIAS-JRA3 (STREGA) partially supported R&D activities in thermal noise issues for 3rd generation GW detectors
 - European Science Foundation supported an exploratory workshop (Perugia, Sept 2005) that has been a milestone in the definition of the strategy for the proposal of a new Observatory
 - FP7 Design Study has been the perfect environment where to synthesize our ideas in a proposal and compete with other excellent proposals

- ET: Einstein Telescope
 - An European 3rd Generation Gravitational Wave Observatory

ET

- Conceptual design study proposed at the May 2007 FP7 call
 - Capacities
 - Research Infrastructures
 - Collaborative projects

ET: Participants

	Participant no.	Participant organization name	Country	
((@)))EGO	1	European Gravitational Observatory	Italy-France	
	2	Istituto Nazionale di Fisica Nucleare	Italy	INFN INFN
MAX-PLANCK-GESELLSCHAFT	3	Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., acting through Max- Planck-Institut für Gravitationsphysik	Germany	di Fisica Nucleare
chs	4	Centre National de la Recherche Scientifique	France	
77	5	University of Birmingham	United Kingdom	
	6	University of Glasgow	United Kingdom	UNIVERSITY ⁰⁶ BIRMINGHAM
UNIVERSITY ଖ GLASGOW	7	NIKHEF	The Netherlands	
CARDIFF	8	Cardiff University	United Kingdom	

ET: Status of the project

- The proposal passed the first selection and now we are in an advanced negotiation phase
- We agreed a budget reduction to 3M€ for 38Months of activity
 - Main costs: man power and travels
- Description of Work document accepted by the European Officer
 - We are submitting the signed documents to prepare the Grant Agreement
 - Consortium Agreement under final definition

- Project organization driven by the "Physics":
 - 4 working groups are devoted to the major technical and scientific issues
 - Let see the main technical aspects:

3 main noise sources

Cryogenic Optics

- Test masses and suspensions thermal noise reduces at low temperature: $<\!\!X^2\!\!> \,^\sim T$
- Thermoelastic noise of the mirror substrates and coatings decrease: $\langle X^2 \rangle \sim \alpha T^2$
 - Thermal expansion rate α decreases at low temperature;
- Mechanical Q of some materials increases at low temperature
- Thermal lensing:
 - Thermal conductivity increases and consequently reduces thermal gradients on the coating;
 - Refraction index variation with temperature is very small at low temperature; (Sapphire @ 20K $\beta = 9 \times 10^{-8}$, Fused Silica @ 300K $\beta \sim 10^{-6}$)

ILIAS "supported" or related activities

Cryogenic Super attenuator

R&D activities in INFN Rome & Pisa

Silicon substrates R&D activities in many **European Labs:** Glasgow, INFN Florence & Perugia, Jena University, ...

ity [w m' K']

4000

3000

Ŧ

300

200

250

7000 Thermal Conducti

Coatings studies

R&D activities in many **European Labs:** Glasgow, INFN Perugia, LMA-Lyon, MPG Hannover, ...

Non Gaussian Beams

 Thermal noise in a GW interferometric detector could be further reduced by using "flatter" beams:

3 main noise sources

3 main noise sources

Co-located interferometers

- "Old" idea still under debate
 - Possible implementation: 3 detectors in a triangle configuration

3 main noise sources

Underground operations

- <u>LISM</u>: 20 m Fabry-Perot interferometer, R&D for LCGT, moved from Mitaka (ground based) to Kamioka (underground)
 - Seismic noise strongly reduced

Seismic Isolation Shortcut

Newtonian

Noise

credit: G.Cella

Compression waves

• Surface waves give the main contribution to newtonian noise

3 main noise sources

Conclusions

- The target of the four Working Groups in the ET project is to try to transform these (and many other) ideas in a coherent conceptual design
- It is an huge job for a restricted set of persons
- ET is an emerging facility for the whole Europe and we don't want to limit the contribution to the founding team/institutions
- The proposal writers created in the project structure a special body that permits the exchange with a larger Scientific Community
- **ET Project** The Science Team has been considered \bullet extremely important by the project Executive board referee and already promoted the Science Governing interest of European and extra-Council Team **European Scientists** Scientific Institutions community
- If you are interested, please, contact us

Conclusions: Planning

